[1]
|
C. Alves, M. Souto and S. Soares, Schördinger-Piosson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377, 584-592. doi: 10.1016/j.jmaa.2010.11.031
CrossRef Google Scholar
|
[2]
|
A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 1994, 122, 519-543. doi: 10.1006/jfan.1994.1078
CrossRef Google Scholar
|
[3]
|
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Piosson problem, Commun. Contemp. Math., 2008, 10, 391-404. doi: 10.1142/S021919970800282X
CrossRef Google Scholar
|
[4]
|
T. D' Aprile and J. Wei, On bound states concentrating on spheres for Maxwell-Schrödinger equation, SIAM J. Math. Anal., 2005, 37, 321-342. doi: 10.1137/S0036141004442793
CrossRef Google Scholar
|
[5]
|
J. Azorero and I. Peral, Hardy inequalities and some critical elliptic and parabolic problem, J. Differential Equations, 1998, 144, 441-476. doi: 10.1006/jdeq.1997.3375
CrossRef Google Scholar
|
[6]
|
A. Azzollini and A. Pomponio, Ground state solutions for nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 11, 90-108.
Google Scholar
|
[7]
|
V. Benci and D. Fortunato, An eigenvalue problem for the nonlinear Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11, 283-293. doi: 10.12775/TMNA.1998.019
CrossRef Google Scholar
|
[8]
|
H. Bersstycki and P. Lions, Nonlinear scalar field equations I. Existence of a ground state, Arch. Ration. Mech. Anal., 1983, 82, 313-345. doi: 10.1007/BF00250555
CrossRef Google Scholar
|
[9]
|
C. Le Bris and P. Lions, From atoms to crystals: a mathematical journey, Bull. Amer. Math. Soc.(N.S.), 2005, 42(3), 291-363. doi: 10.1090/S0273-0979-05-01059-1
CrossRef Google Scholar
|
[10]
|
G. Cerami and G. Vaira, Postive solutions for some non-autonomos Schrödinger-Piosson systems, J. Differential Equations, 2010, 248, 521-543. doi: 10.1016/j.jde.2009.06.017
CrossRef Google Scholar
|
[11]
|
X. He and W. Zou, Existence and concentration of ground states for Schrödinger-Piosson equations with ritical growth, J. Math. Phys., 2012, 53, 023702. doi: 10.1063/1.3683156
CrossRef Google Scholar
|
[12]
|
I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger-Piosson-Slater problem, Commun. Contemp. Math., 2012, 14, 1250003. doi: 10.1142/S0219199712500034
CrossRef Google Scholar
|
[13]
|
S. Kim and J. Seok, On nodal solutions of he nonlinear Schrödinger-Piosson equations, Commun. Contemp. Math., 2012, 14, 1250041. doi: 10.1142/S0219199712500411
CrossRef Google Scholar
|
[14]
|
R. Kajikiya, A critical point theorem related to the symmetric mountain-pass lemms and its applicaitions to elliptic equations, J. Funct. Analysis, 2005, 225, 352-370. doi: 10.1016/j.jfa.2005.04.005
CrossRef Google Scholar
|
[15]
|
E. Lieb and B. Simon, The thomas-Fermi theory of atoms, molecules and solids, Adv. Math., 1977, 23, 22-116. doi: 10.1016/0001-8708(77)90108-6
CrossRef Google Scholar
|
[16]
|
Z. Liu and S. Guo, On ground state solutions for the Schrödinger-Poisson equations with critical growth. J. Math. Anal. Appl., 2014, 412, 435-448. doi: 10.1016/j.jmaa.2013.10.066
CrossRef Google Scholar
|
[17]
|
Z. Liu, S. Guo and Y. Fang, Multiple semiclassical states for coupled Schrödinger-Poisson equations with critical exponential growth, J. Math. Phys., 2015, 56, 041505. doi: 10.1063/1.4919543
CrossRef Google Scholar
|
[18]
|
Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM: Control Optim. Calc. Var., 2017, 23, 1515-1542. doi: 10.1051/cocv/2016063
CrossRef Google Scholar
|
[19]
|
Z. Liu, Z. Zhang and S. Huang, Existence and nonexistence of positive solutions for a static Schrödinger-Poisson-Slater equation, J. Differential Equations, 2019, 266, 5912-5941. doi: 10.1016/j.jde.2018.10.048
CrossRef Google Scholar
|
[20]
|
P. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Matemática Iberoamericana, 1985, 1, 145-201.
Google Scholar
|
[21]
|
J. Mauser, The Schördinger-Piosson-Xα equation, Appl. Math. Lett., 2001, 14, 759-763. doi: 10.1016/S0893-9659(01)80038-0
CrossRef Google Scholar
|
[22]
|
C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Piosson-Slater equations at the critical frequency, Calc. Var. Partial Differential Equations, 2016, 55:146, DOI10.1007/s00526-016-1079-3. doi: 10.1007/s00526-016-1079-3
CrossRef Google Scholar
|
[23]
|
D. Ruiz, The Schrödinger-Piosson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237, 655-674. doi: 10.1016/j.jfa.2006.04.005
CrossRef Google Scholar
|
[24]
|
D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Piosson-Slater problem around a local minimun of potential, Rev. Mat. Iberoam, 2011, 27, 253-271.
Google Scholar
|
[25]
|
D. Ruiz, On the Schrödinger-Piosson-Slater System: Behavior of Minimizers, Radial and Non-radial Cases, Arch. Rational Mech. Anal., 2010, 198, 349-368. doi: 10.1007/s00205-010-0299-5
CrossRef Google Scholar
|
[26]
|
P. Rabinowitz, Minimax Methods in Ctitical-Point Theory with Applications to Differential Equations, CBME Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Procidence, 1986.
Google Scholar
|
[27]
|
G. Siciliano, Multiple positive solutions for a Schrödinger-Piosson-Slater system, J. Math. Anal. Appl., 2010, 365, 288-299. doi: 10.1016/j.jmaa.2009.10.061
CrossRef Google Scholar
|
[28]
|
Y. Song and S. Shi, Existence of infinitely many solutions for degenerate p-fractional Kirchhoff equations with critical Sobolev-Hardy nonlinearities, Z. Angew. Math. Phys., 2017, 128, 1-13.
Google Scholar
|
[29]
|
J. Sun, T. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger-Piosson system, J. Differential Equations, 2016, 260, 586-627. doi: 10.1016/j.jde.2015.09.002
CrossRef Google Scholar
|
[30]
|
X. Tang and S. Chen, Ground state solutions of Nehari-Pohozaev type for Schrödinger-Piosson problems with general potentials, Discrete Contin. Dyn. Syst., 2017, 37, 4973-5002. doi: 10.3934/dcds.2017214
CrossRef Google Scholar
|
[31]
|
Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Piosson system in $\mathbb R^{3}$, Calc. Var. Partial Differential Equations, 2015, 52, 927-943. doi: 10.1007/s00526-014-0738-5
CrossRef $\mathbb R^{3}$" target="_blank">Google Scholar
|
[32]
|
J. Zhang, On the Schrödinger-Piosson equatons with a general nonlinearity in the critical growth, Nonlinear Anal., 2012, 75, 6391-6401. doi: 10.1016/j.na.2012.07.008
CrossRef Google Scholar
|
[33]
|
L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Piosson equations, J. Math. Anal. Appl., 2008, 346, 155-169. doi: 10.1016/j.jmaa.2008.04.053
CrossRef Google Scholar
|