2019 Volume 9 Issue 5
Article Contents

Bilender P. Allahverdiev, Hüseyin Tuna. INDICES DEFECT THEORY OF SINGULAR HAHN-STURM-LIOUVILLE OPERATORS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1719-1730. doi: 10.11948/20180308
Citation: Bilender P. Allahverdiev, Hüseyin Tuna. INDICES DEFECT THEORY OF SINGULAR HAHN-STURM-LIOUVILLE OPERATORS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1719-1730. doi: 10.11948/20180308

INDICES DEFECT THEORY OF SINGULAR HAHN-STURM-LIOUVILLE OPERATORS

  • In this article, we extend the results concerning the deficiency index problem to singular Hahn-Sturm-Liouville difference operators. We establish some criteria under which the singular Hahn-Sturm-Liouville equation is of limit-point case at infinity.
    MSC: 39A70, 47B25, 39A13, 34B20, 39A12
  • 加载中
  • [1] K. A. Aldwoah, Generalized time scales and associated difference equations. Ph.D. Thesis, Cairo University, 2009.

    Google Scholar

    [2] B. P. Allahverdiev, Spectral problems of non-self-adjoint q-Sturm-Liouville operators in limit-point case, Kodai Math. J., 2016, 39(1), 1-15. doi: 10.2996/kmj/1458651688

    CrossRef Google Scholar

    [3] B. P. Allahverdiev and H. Tuna, Limit-point criteria for q-Sturm-Liouville equations, Quaest. Math. (in press).

    Google Scholar

    [4] R. Álvarez-Nodarse, On characterizations of classical polynomials, J. Comput. Appl. Math., 2006, 196(1), 320-337. doi: 10.1016/j.cam.2005.06.046

    CrossRef Google Scholar

    [5] M. H. Annaby, A. E. Hamza and K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 2012, 154, 133-153. doi: 10.1007/s10957-012-9987-7

    CrossRef Google Scholar

    [6] M. H. Annaby, A. E. Hamza and S. D. Makharesh, A Sturm-Liouville theory for Hahn difference operator, in: Xin Li, Zuhair Nashed (Eds.), Frontiers of Orthogonal Polynomials and q-Series, World Scientific, Singapore, 35-84, 2018.

    Google Scholar

    [7] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

    Google Scholar

    [8] A. Dobrogowska and A.Odzijewicz, Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math., 2006, 193(1), 319-346. doi: 10.1016/j.cam.2005.06.009

    CrossRef Google Scholar

    [9] N. Dunford and J. T. Schwartz, Linear Operators, Part II: Spectral Theory, Interscience, New York, 1963.

    Google Scholar

    [10] W. N. Everitt, On the limit point classification of second order differential expressions, J. London Math. Soc., 1966, 41, 531-534.

    Google Scholar

    [11] W. N. Everitt, On the limit-circle classification of second-order differential expressions, Quart. J. Math. Oxford Ser., 1972, 23(2), 193-196. doi: 10.1093/qmath/23.2.193

    CrossRef Google Scholar

    [12] W. Hahn, Über orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr., 1949, 2, 4-34. doi: 10.1002/mana.19490020103

    CrossRef Google Scholar

    [13] W. Hahn, Ein beitrag zur theorie der orthogonalpolynome, Monatsh. Math., 1983, 95, 19-24. doi: 10.1007/BF01301144

    CrossRef Google Scholar

    [14] A. E. Hamza and S. A. Ahmed, Theory of linear Hahn difference equations, J. Adv. Math., 2013, 4(2), 440-460.

    Google Scholar

    [15] A. E. Hamza and S. A. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Difference Equat., 2013, 316, 1-15.

    Google Scholar

    [16] A. E. Hamza and S. D. Makharesh, Leibniz' rule and Fubinis theorem associated with Hahn difference operator, J. Adv. Math., 2016, 12(6), 6335-6345. doi: 10.24297/jam.v12i6.3836

    CrossRef Google Scholar

    [17] F. H. Jackson, q-Difference equations, Amer. J. Math., 1910, 32, 305-314. doi: 10.2307/2370183

    CrossRef Google Scholar

    [18] D. L. Jagerman, Difference Equations with Applications to Queues, Dekker, New York, 2000.

    Google Scholar

    [19] C. Jordan, Calculus of Finite Differences, 3rd edn, Chelsea, New York, 1965.

    Google Scholar

    [20] R. M. Kaufman, T. T. Read and A. Zettl, The Deficiency Index Problem for Powers of Ordinary Differential Expressions, Lecture Notes in Mathematics, vol.621, Springer-Verlag, New York, 1977.

    Google Scholar

    [21] K. H. Kwon, D. W. Lee, S. B. Park et al., Hahn class orthogonal polynomials, Kyungpook Math. J., 1998, 38, 259-281.

    Google Scholar

    [22] P. A. Lesky, Eine Charakterisierung der klassischen kontinuierlichen, diskreten und q-Orthgonalpolynome, Shaker, Aachen, 2005.

    Google Scholar

    [23] N. Levinson, Criteria for the limit point case for second order linear differential equations, Casopis Pest. Mat. Fys., 1949, 74, 17-20.

    Google Scholar

    [24] A. B. Malinowska, and D. F. M. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl., 2010, 147: 419. doi: 10.1007/s10957-010-9730-1

    CrossRef Google Scholar

    [25] A. B. Malinowska, and D. F. M. Torres, Quantum variational calculus, Springer Briefs in Electrical and Computer Engineering-Springer Briefs in Control, Automation and Robotics, Springer Cham Heidelberg, New York, Dordrecht London, 2014.

    Google Scholar

    [26] M. A. Naimark, Linear Differential Operators, 2nd edn, Moscow, Nauka, 1969; English transl. of 1st edn, Parts 1, 2, New York, Ungar, 1967, 1968.

    Google Scholar

    [27] J. Petronilho, Generic formulas for the values at the singular points of some special monic classical Hq, ω-orthogonal polynomials, J. Comput. Appl. Math., 2007, 205, 314-324. doi: 10.1016/j.cam.2006.05.005

    CrossRef Google Scholar

    [28] D. B. Sears, Note on the uniqueness of the Green's function associated with certain second order differential equations, Canadian J. Math., 1950, 4, 314-325.

    Google Scholar

    [29] T. Sitthiwirattham, On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q, ω-derivatives, Adv. Difference Equat., 2016, 2016(1), article no. 116.

    Google Scholar

    [30] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part â…. Second Edition, Clarendon Press, Oxford, 1962.

    Google Scholar

    [31] H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., 1910, 68(2), 220-269. doi: 10.1007/BF01474161

    CrossRef Google Scholar

    [32] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, 121. American Mathematical Society: Providence, RI, 2005.

    Google Scholar

Article Metrics

Article views(1958) PDF downloads(372) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint