[1]
|
K. A. Aldwoah, Generalized time scales and associated difference equations. Ph.D. Thesis, Cairo University, 2009.
Google Scholar
|
[2]
|
B. P. Allahverdiev, Spectral problems of non-self-adjoint q-Sturm-Liouville operators in limit-point case, Kodai Math. J., 2016, 39(1), 1-15. doi: 10.2996/kmj/1458651688
CrossRef Google Scholar
|
[3]
|
B. P. Allahverdiev and H. Tuna, Limit-point criteria for q-Sturm-Liouville equations, Quaest. Math. (in press).
Google Scholar
|
[4]
|
R. Álvarez-Nodarse, On characterizations of classical polynomials, J. Comput. Appl. Math., 2006, 196(1), 320-337. doi: 10.1016/j.cam.2005.06.046
CrossRef Google Scholar
|
[5]
|
M. H. Annaby, A. E. Hamza and K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 2012, 154, 133-153. doi: 10.1007/s10957-012-9987-7
CrossRef Google Scholar
|
[6]
|
M. H. Annaby, A. E. Hamza and S. D. Makharesh, A Sturm-Liouville theory for Hahn difference operator, in: Xin Li, Zuhair Nashed (Eds.), Frontiers of Orthogonal Polynomials and q-Series, World Scientific, Singapore, 35-84, 2018.
Google Scholar
|
[7]
|
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
Google Scholar
|
[8]
|
A. Dobrogowska and A.Odzijewicz, Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math., 2006, 193(1), 319-346. doi: 10.1016/j.cam.2005.06.009
CrossRef Google Scholar
|
[9]
|
N. Dunford and J. T. Schwartz, Linear Operators, Part II: Spectral Theory, Interscience, New York, 1963.
Google Scholar
|
[10]
|
W. N. Everitt, On the limit point classification of second order differential expressions, J. London Math. Soc., 1966, 41, 531-534.
Google Scholar
|
[11]
|
W. N. Everitt, On the limit-circle classification of second-order differential expressions, Quart. J. Math. Oxford Ser., 1972, 23(2), 193-196. doi: 10.1093/qmath/23.2.193
CrossRef Google Scholar
|
[12]
|
W. Hahn, Über orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr., 1949, 2, 4-34. doi: 10.1002/mana.19490020103
CrossRef Google Scholar
|
[13]
|
W. Hahn, Ein beitrag zur theorie der orthogonalpolynome, Monatsh. Math., 1983, 95, 19-24. doi: 10.1007/BF01301144
CrossRef Google Scholar
|
[14]
|
A. E. Hamza and S. A. Ahmed, Theory of linear Hahn difference equations, J. Adv. Math., 2013, 4(2), 440-460.
Google Scholar
|
[15]
|
A. E. Hamza and S. A. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Difference Equat., 2013, 316, 1-15.
Google Scholar
|
[16]
|
A. E. Hamza and S. D. Makharesh, Leibniz' rule and Fubinis theorem associated with Hahn difference operator, J. Adv. Math., 2016, 12(6), 6335-6345. doi: 10.24297/jam.v12i6.3836
CrossRef Google Scholar
|
[17]
|
F. H. Jackson, q-Difference equations, Amer. J. Math., 1910, 32, 305-314. doi: 10.2307/2370183
CrossRef Google Scholar
|
[18]
|
D. L. Jagerman, Difference Equations with Applications to Queues, Dekker, New York, 2000.
Google Scholar
|
[19]
|
C. Jordan, Calculus of Finite Differences, 3rd edn, Chelsea, New York, 1965.
Google Scholar
|
[20]
|
R. M. Kaufman, T. T. Read and A. Zettl, The Deficiency Index Problem for Powers of Ordinary Differential Expressions, Lecture Notes in Mathematics, vol.621, Springer-Verlag, New York, 1977.
Google Scholar
|
[21]
|
K. H. Kwon, D. W. Lee, S. B. Park et al., Hahn class orthogonal polynomials, Kyungpook Math. J., 1998, 38, 259-281.
Google Scholar
|
[22]
|
P. A. Lesky, Eine Charakterisierung der klassischen kontinuierlichen, diskreten und q-Orthgonalpolynome, Shaker, Aachen, 2005.
Google Scholar
|
[23]
|
N. Levinson, Criteria for the limit point case for second order linear differential equations, Casopis Pest. Mat. Fys., 1949, 74, 17-20.
Google Scholar
|
[24]
|
A. B. Malinowska, and D. F. M. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl., 2010, 147: 419. doi: 10.1007/s10957-010-9730-1
CrossRef Google Scholar
|
[25]
|
A. B. Malinowska, and D. F. M. Torres, Quantum variational calculus, Springer Briefs in Electrical and Computer Engineering-Springer Briefs in Control, Automation and Robotics, Springer Cham Heidelberg, New York, Dordrecht London, 2014.
Google Scholar
|
[26]
|
M. A. Naimark, Linear Differential Operators, 2nd edn, Moscow, Nauka, 1969; English transl. of 1st edn, Parts 1, 2, New York, Ungar, 1967, 1968.
Google Scholar
|
[27]
|
J. Petronilho, Generic formulas for the values at the singular points of some special monic classical Hq, ω-orthogonal polynomials, J. Comput. Appl. Math., 2007, 205, 314-324. doi: 10.1016/j.cam.2006.05.005
CrossRef Google Scholar
|
[28]
|
D. B. Sears, Note on the uniqueness of the Green's function associated with certain second order differential equations, Canadian J. Math., 1950, 4, 314-325.
Google Scholar
|
[29]
|
T. Sitthiwirattham, On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q, ω-derivatives, Adv. Difference Equat., 2016, 2016(1), article no. 116.
Google Scholar
|
[30]
|
E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part â…. Second Edition, Clarendon Press, Oxford, 1962.
Google Scholar
|
[31]
|
H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., 1910, 68(2), 220-269. doi: 10.1007/BF01474161
CrossRef Google Scholar
|
[32]
|
A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, 121. American Mathematical Society: Providence, RI, 2005.
Google Scholar
|