[1]
|
J. R. Andrews, S. Basu, The transmission dynamics and control of cholera in haiti: an epidemic model, Lancet. 2011, 377(9773), 1248-1255. doi: 10.1016/S0140-6736(11)60273-0
CrossRef Google Scholar
|
[2]
|
D. Barua, W. B. Greenough, History of cholera, Cholera, Ⅲ, Plenum, New York, 1992, 1-36.
Google Scholar
|
[3]
|
T. Burton, V. Hutson, Repellers in system with infinite delay, J. Math. Anal. Appl., 1989, 137, 240-263. doi: 10.1016/0022-247X(89)90287-4
CrossRef Google Scholar
|
[4]
|
V. Capasso, S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the european mediterranean region, Rev. Epidemiol. Sante. Publ., 1979, 27, 121-132.
Google Scholar
|
[5]
|
L. Cai, C. Modnak, J. Wang, An age-structure model for cholera control with vaccination, Appl. Math. Comput., 2017, 299, 127-146.
Google Scholar
|
[6]
|
L. Cai, M. Martcheva, X. Li, Epidemic models with age of infection, indirect transmission and incomplete treatment, Discrete and Continuous Dynamical Systems Series B, 2013, 18, 2239-2265. doi: 10.3934/dcdsb.2013.18.2239
CrossRef Google Scholar
|
[7]
|
C. T. Codeço, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 2001, 1, 1-14. doi: 10.1186/1471-2334-1-1
CrossRef Google Scholar
|
[8]
|
J. Deen, L. von Seidlein, F. J. Luquero, et al, The scenario approach for countries considering the addition of oral cholera vaccination in cholera preparedness and control plans, Lancet Infect. Dis., 2016, 16(1), 125-129. doi: 10.1016/S1473-3099(15)00298-4
CrossRef Google Scholar
|
[9]
|
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180, 29-48. doi: 10.1016/S0025-5564(02)00108-6
CrossRef Google Scholar
|
[10]
|
P. van den Driessche, X. Zou, Modeling relapse in infectious diseases, Math. Biosci., 2007, 207, 89-103. doi: 10.1016/j.mbs.2006.09.017
CrossRef Google Scholar
|
[11]
|
M. Enserink, Haiti's outbreak is latest in cholera's new global assault, Science, 2010, 330, 738-739. doi: 10.1126/science.330.6005.738
CrossRef Google Scholar
|
[12]
|
I. C. Fung, Cholera transmission dynamic models for public health practitioners, Emerg Themes Epidemiol, 2014, 11(1), 1-11. doi: 10.1186/1742-7622-11-1
CrossRef Google Scholar
|
[13]
|
Y. H. Grad, J. C. Miller, M. Lipsitch, Cholera modeling: challenges to quantitative analysis and predicting the impact of interventions, Epidemiology, 2012, 23(4), 523-530. doi: 10.1097/EDE.0b013e3182572581
CrossRef Google Scholar
|
[14]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988. DOI: http://dx.doi.org/10.1090/surv/025.
Google Scholar
|
[15]
|
J. K. Hale, P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 1989, 20, 388-395. doi: 10.1137/0520025
CrossRef Google Scholar
|
[16]
|
D. He, X. Wang, D. Gao, J. Wang, Modeling the 2016-2017 Yemen cholera outbreak with the impact of limited medical resources, J. Theor. Biol., 2018, 451, 80-85. doi: 10.1016/j.jtbi.2018.04.041
CrossRef Google Scholar
|
[17]
|
A. A. King, E. L. Ionides, M. Pascual, M. J. Bouma, Inapparent infections and cholera dynamics, Nature, 2008, 454, 877-880. doi: 10.1038/nature07084
CrossRef Google Scholar
|
[18]
|
M. Levine, R. Black, M. Clements, L. Cisneros, D. Nalin, C. Young, Duration of infection-derived immunity to cholera. J. Infect. Dis., 1981, 143(6), 818-820. doi: 10.1093/infdis/143.6.818
CrossRef Google Scholar
|
[19]
|
P. Magal, C. C. McCluskey, G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model, Applicable Analysis, 2010, 89, 1109-1140. doi: 10.1080/00036810903208122
CrossRef Google Scholar
|
[20]
|
M. Martcheva, H. R. Thieme, Progression-age enhanced backward bifurcation in an epidemic model with super-infection, J. Math. Biol., 2003, 46, 385-424. doi: 10.1007/s00285-002-0181-7
CrossRef Google Scholar
|
[21]
|
M. Martcheva, X. Li, Competitive exclusion in an infection-age structured model with environmental transmission, J. Math. Anal. Appl., 2013, 408, 225-246. doi: 10.1016/j.jmaa.2013.05.064
CrossRef Google Scholar
|
[22]
|
C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal: Real World Appl., 2010, 11, 55-59. doi: 10.1016/j.nonrwa.2008.10.014
CrossRef Google Scholar
|
[23]
|
R. K. Miller, Nolinear Volterra integral Equations, W. A. Benjamin Inc., New York, 1971.
Google Scholar
|
[24]
|
Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. Smith, J. Morris, Estimating the reproduc- tive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 2011, 108, 8767-8772. doi: 10.1073/pnas.1019712108
CrossRef Google Scholar
|
[25]
|
H. Moreira, Y. Wang, Global stability in an S → I → R → I model, SIAM REV., 1997, 39(3), 496-502. doi: 10.1137/S0036144595295879
CrossRef Google Scholar
|
[26]
|
E. J. Nelson, J. B. Harris, J. G. Morris Jr, S. B. Calderwood, A. Camilli, Cholera transmission: the host, pathogen and bacteriophage dynamic, Nature Reviews Microbiology, 2009, 7, 693-702. doi: 10.1038/nrmicro2204
CrossRef Google Scholar
|
[27]
|
C. R. Phares, K. Date, K. Travers, et al, Mass vaccination with a two-dose oral cholera vaccine in a longstanding refugee camp thailand, Vaccine, 2016, 34(1), 128-133.
Google Scholar
|
[28]
|
M. F. Pasetti, M. M. Levine, Insights from natural infection-derived immunity to cholera instruct vaccine efforts, Clin. Vaccine Immunol, 2012, 19(11), 1707-1711. doi: 10.1128/CVI.00543-12
CrossRef Google Scholar
|
[29]
|
D. Posny, J. Wang, Z. Mukandavire, C. Modnak, Analyzing transmission dynamics of cholera with public health interventions, Math. Biosci., 2015, 264, 38-53. doi: 10.1016/j.mbs.2015.03.006
CrossRef Google Scholar
|
[30]
|
K. Sawano, some considerations on the fundamental theorems for functional differential equations with infinite delay, Funkcial. Ekvac., 1982, 25, 97-104.
Google Scholar
|
[31]
|
Z. Shuai, P. van den Driessche, Global Stability of infectious Disease model using Lyapunov functions, SIAM J. Appl. Math., 2013, 73, 1513-1532. doi: 10.1137/120876642
CrossRef Google Scholar
|
[32]
|
H. R. Thieme, J. Yang, An endemic model with variable reinfection rate and applications to influenza, Math. Biosci., 2002, 180, 207-235. doi: 10.1016/S0025-5564(02)00102-5
CrossRef Google Scholar
|
[33]
|
J. P. Tian, J. Wang, Global stability for cholera epidemic models, Math. Biosci., 2011, 232(1), 31-41.
Google Scholar
|
[34]
|
W. E. Woodward, Cholera reinfection in man, The Journal of Infectious diseases, 1971, 123, 61-66. doi: 10.1093/infdis/123.1.61
CrossRef Google Scholar
|
[35]
|
X. Wang, D. Gao, J. Wang, Influence of human behavior on cholera epidemics, Math. Biosci., 2015, 267, 41-52. doi: 10.1016/j.mbs.2015.06.009
CrossRef Google Scholar
|
[36]
|
World Health Organization, Cholera fact sheets, 1 February 2018. Available from: www.who.int.
Google Scholar
|
[37]
|
World Health Organization, http://www.emro.who.int/yem/yemeninfocus/situation-reports.html.
Google Scholar
|
[38]
|
World Health Organization Weekly Epidemiology Bulletin, 13-19 November 2017.
Google Scholar
|
[39]
|
WHO Cholera-fact sheet number 107: February 2014.http://www.who.int/mediacentre/factsheets/fs107/en/.
Google Scholar
|
[40]
|
R. Xu, Global dynamics of an epidemiologicalmodel with age of infection and disease relapse, J. Bio. Dyna., 2018, 12, 118-145. doi: 10.1080/17513758.2017.1408860
CrossRef Google Scholar
|
[41]
|
W. Zhang, X. Meng, Y. Dong, Periodic Solution and Ergodic Stationary Distribution of Stochastic SIRI Epidemic Systems with Nonlinear Perturbations, Journal of Systems Science and Complexity, 2019, 32, 1-21. doi: 10.1007/s11424-019-8000-z
CrossRef Google Scholar
|