| 
	                    [1]
	                 | 
	            					
																										A. Buica and J. Llibre, Avariaging methods for finding period orbits via Brouwer degree, Bull. Sci. Math., 2004, 128, 7-22. doi: 10.1016/j.bulsci.2003.09.002
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [2]
	                 | 
	            					
																										L. Cid-Montiel, J. Llibre and C. Stoica, Zero-hopf bifurcation in a hyperchaotic lorenz system, Nonliear Dyn., 2014, 75, 561-566. doi: 10.1007/s11071-013-1085-3
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [3]
	                 | 
	            					
																										R. D. Euzebio and J. Llibre, Zero-hopf bifurcation in a Chua's system, Nonlinear Anal. Real Word Appl., 2017, 37, 31-40. doi: 10.1016/j.nonrwa.2017.02.002
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [4]
	                 | 
	            					
																										R. D. Euzebio, J. Llibre and C. Vidal, Zero-hopf bifurcation in the Fitzhughnagumo system, Math. Method Appl. Sci., 2015, 38, 4289-4299. doi: 10.1002/mma.3365
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [5]
	                 | 
	            					
																										J. Francoise and J. Llibre, Analytical study of a triple Hopf bifurcation in a tritrophic food chain model, Appl. Math. Comput., 2011, 217, 7146-7154.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [6]
	                 | 
	            					
																										M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 2017, 7, 788-794. doi: 10.11948/2017049
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [7]
	                 | 
	            					
																										M. A. Khan and S. Poria, Generalized synchronization of nuclear spin generator system and the application in secure communication, J. Dyn. Syst. Geom. Theor., 2012, 10, 53-59.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [8]
	                 | 
	            					
																										D. Li and K. Huang, Hopf-bifurcation in a three-dimensional system, Appl. Math. Mech., 1989, 10(11), 1011-1018. doi: 10.1007/BF02014548
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [9]
	                 | 
	            					
																										J. Llibre and D. Xiao, Limit cycle bifurcation from a non-isolated zero-hopf equilbrium of three-dimensional differential systems, Pro. Amer. Math. Soc., 2014, 142, 2047-2062. doi: 10.1090/S0002-9939-2014-11923-X
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [10]
	                 | 
	            					
																										M. R. Molaei, Ö. Umut.Generalized synchronization of nuclear spin generator system, Chaos Solitons Fractals, 2008, 37, 227-232. doi: 10.1016/j.chaos.2006.08.035
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [11]
	                 | 
	            					
																										J. Sanders, F. Verhulst and F.Murdock, Averaging method in Nonliear Dynamical system, 2nd edn., Springer, New York, 2007.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [12]
	                 | 
	            					
																										S. Sherman, A third-order nonlinear system arising from a nuclear spin generator, Contributions to Differential Equations, 1963, 2, 197-227.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [13]
	                 | 
	            					
																										Ö. Umut, Controlling chaos in nuclear spin generator system using backstepping design, Appl. Sci., 2009, 11, 151-160.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [14]
	                 | 
	            					
																										C. Valls, Intergrablity of a nulear spin genetor, Bull. Sci. Math., 2011, 135, 435-441. doi: 10.1016/j.bulsci.2011.04.004
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [15]
	                 | 
	            					
																										Q. Yuan and X. Yang, Computer-assisted verification of chaos in the model of nuclear spin generator, Appl. Math. Comput., 2009, 213, 148-152.
							 							Google Scholar
							
						 
											 |