[1]
|
A. Buica and J. Llibre, Avariaging methods for finding period orbits via Brouwer degree, Bull. Sci. Math., 2004, 128, 7-22. doi: 10.1016/j.bulsci.2003.09.002
CrossRef Google Scholar
|
[2]
|
L. Cid-Montiel, J. Llibre and C. Stoica, Zero-hopf bifurcation in a hyperchaotic lorenz system, Nonliear Dyn., 2014, 75, 561-566. doi: 10.1007/s11071-013-1085-3
CrossRef Google Scholar
|
[3]
|
R. D. Euzebio and J. Llibre, Zero-hopf bifurcation in a Chua's system, Nonlinear Anal. Real Word Appl., 2017, 37, 31-40. doi: 10.1016/j.nonrwa.2017.02.002
CrossRef Google Scholar
|
[4]
|
R. D. Euzebio, J. Llibre and C. Vidal, Zero-hopf bifurcation in the Fitzhughnagumo system, Math. Method Appl. Sci., 2015, 38, 4289-4299. doi: 10.1002/mma.3365
CrossRef Google Scholar
|
[5]
|
J. Francoise and J. Llibre, Analytical study of a triple Hopf bifurcation in a tritrophic food chain model, Appl. Math. Comput., 2011, 217, 7146-7154.
Google Scholar
|
[6]
|
M. Han, On the maximum number of periodic solutions of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 2017, 7, 788-794. doi: 10.11948/2017049
CrossRef Google Scholar
|
[7]
|
M. A. Khan and S. Poria, Generalized synchronization of nuclear spin generator system and the application in secure communication, J. Dyn. Syst. Geom. Theor., 2012, 10, 53-59.
Google Scholar
|
[8]
|
D. Li and K. Huang, Hopf-bifurcation in a three-dimensional system, Appl. Math. Mech., 1989, 10(11), 1011-1018. doi: 10.1007/BF02014548
CrossRef Google Scholar
|
[9]
|
J. Llibre and D. Xiao, Limit cycle bifurcation from a non-isolated zero-hopf equilbrium of three-dimensional differential systems, Pro. Amer. Math. Soc., 2014, 142, 2047-2062. doi: 10.1090/S0002-9939-2014-11923-X
CrossRef Google Scholar
|
[10]
|
M. R. Molaei, Ö. Umut.Generalized synchronization of nuclear spin generator system, Chaos Solitons Fractals, 2008, 37, 227-232. doi: 10.1016/j.chaos.2006.08.035
CrossRef Google Scholar
|
[11]
|
J. Sanders, F. Verhulst and F.Murdock, Averaging method in Nonliear Dynamical system, 2nd edn., Springer, New York, 2007.
Google Scholar
|
[12]
|
S. Sherman, A third-order nonlinear system arising from a nuclear spin generator, Contributions to Differential Equations, 1963, 2, 197-227.
Google Scholar
|
[13]
|
Ö. Umut, Controlling chaos in nuclear spin generator system using backstepping design, Appl. Sci., 2009, 11, 151-160.
Google Scholar
|
[14]
|
C. Valls, Intergrablity of a nulear spin genetor, Bull. Sci. Math., 2011, 135, 435-441. doi: 10.1016/j.bulsci.2011.04.004
CrossRef Google Scholar
|
[15]
|
Q. Yuan and X. Yang, Computer-assisted verification of chaos in the model of nuclear spin generator, Appl. Math. Comput., 2009, 213, 148-152.
Google Scholar
|