2019 Volume 9 Issue 5
Article Contents

Qianqian Zhao, Jiang Yu. LIMIT CYCLES OF PIECEWISE LINEAR DYNAMICAL SYSTEMS WITH THREE ZONES AND LATERAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1822-1837. doi: 10.11948/20180321
Citation: Qianqian Zhao, Jiang Yu. LIMIT CYCLES OF PIECEWISE LINEAR DYNAMICAL SYSTEMS WITH THREE ZONES AND LATERAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1822-1837. doi: 10.11948/20180321

LIMIT CYCLES OF PIECEWISE LINEAR DYNAMICAL SYSTEMS WITH THREE ZONES AND LATERAL SYSTEMS

  • Corresponding author: Email address: jiangyu@sjtu.edu.cn (J. Yu)
  • Fund Project: The Corresponding author is supported by NNSF of China grant number 11431008 and 11771282, NSF of Shanghai grant number 15ZR1423700
  • In this paper, we give some evidences what cause more limit cycles for piecewise dynamical systems. We say, the angles or the number of zones are critical points. We study an example of linear lateral systems and an example of linear Y-shape systems, and prove that they have five and four crossing limit cycles by using Newton-Kantorovich Theorem, respectively.
    MSC: 34C05, 34C07, 37G15
  • 加载中
  • [1] A. Amador, E. Freire, E. Ponce and J. Ros, On Discontinuous Piecewise Linear Models for Memristor Oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, 27, 1730022. doi: 10.1142/S0218127417300221

    CrossRef Google Scholar

    [2] A. Andronov, A. Vitt and S. Khaikin, Theory of oscillations, Pergamon Press, Oxford, 1996.

    Google Scholar

    [3] P. Cardin and J. Torregrosa, Limit cycles in planar piecewise linear differential systems with nonregular separtion line, Phys. D, 2016, 337, 67-82. doi: 10.1016/j.physd.2016.07.008

    CrossRef Google Scholar

    [4] R. Euzébio and J. Llibre, On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl., 2015, 424, 475-486. doi: 10.1016/j.jmaa.2014.10.077

    CrossRef Google Scholar

    [5] E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1998, 8, 2073-2097. doi: 10.1142/S0218127498001728

    CrossRef Google Scholar

    [6] E. Freire, E. Ponce and F. Torres, Cononical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 2012, 11, 181-211. doi: 10.1137/11083928X

    CrossRef Google Scholar

    [7] E. Freire, E. Ponce and F. Torres, The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publications Matemàtiques, 2014, 221-253.

    Google Scholar

    [8] E. Freire, E. Ponce and F. Torres, A general mechanism to generate three limit cycles in planar Filippov systems with two zones, Nonlinear Dynam., 2014, 78, 251-263. doi: 10.1007/s11071-014-1437-7

    CrossRef Google Scholar

    [9] E. Gu, Bifurcations and Chaos for 2D Discontinuous Dynamical Model of Financial Markets, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, 27, 1750185. doi: 10.1142/S0218127417501851

    CrossRef Google Scholar

    [10] M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equations, 2010, 248, 2399-2416. doi: 10.1016/j.jde.2009.10.002

    CrossRef Google Scholar

    [11] S. Huan and X. Yang, The number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dynam. Systems, 2012, 32, 2147-2164. doi: 10.3934/dcds.2012.32.2147

    CrossRef Google Scholar

    [12] S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems of node-node types, J. Math. Anal. Appl., 2013, 411, 340-353.

    Google Scholar

    [13] S. Huan and X. Yang, Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics, Nonlinear Anal., 2013, 92, 82-95. doi: 10.1016/j.na.2013.06.017

    CrossRef Google Scholar

    [14] Y. Kuznetsov, S. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2003, 13, 2157-2188. doi: 10.1142/S0218127403007874

    CrossRef Google Scholar

    [15] J. Llibre and E. Ponce, Three limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2012, 19, 325-335.

    Google Scholar

    [16] J. Llibre, M.A. Teixeira and J. Torregrosa, Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a sstraight line of separaation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, 23, 135006.

    Google Scholar

    [17] J. Llibre, M. Ordóñz and E. Ponce, On the existence and uniqueness of limit cycles in a planar piecewise linear systems without symmetry, Nonlinear Analysis Series B: Real World Applications, 2013, 14, 2002-2012.

    Google Scholar

    [18] J. Llibre, J. Medrado and O. Ramírez, Limit cycles of planar piecewise linear differential systems defined on two sectors, (Preprint submitted to Elsevier, November 15, 2016).

    Google Scholar

    [19] J. Llibre, D. Novaes and M. Teixeira, Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differentiable center with two zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2015, 25, 1550144. doi: 10.1142/S0218127415501448

    CrossRef Google Scholar

    [20] J. Llibre, D. Novaes and M. Teixeira, Maximum number of limit cycles for certain piecewise linear dynamical systems, Nonlinear Dynam., 2015, 82(3), 1159-1175. doi: 10.1007/s11071-015-2223-x

    CrossRef Google Scholar

    [21] J. Llibre, and M. A. Teixeira, Piecewise linear differential systems without equilibria produce limit cycles? Nonlinear Dynam., 2017, 88, 157-164. doi: 10.1007/s11071-016-3236-9

    CrossRef Google Scholar

    [22] J. Llibre, and M. A. Teixeira, Piecewise linear differential systems with only centers can create limit cycles? Nonlinear Dynam., 2018, 91, 249-255. doi: 10.1007/s11071-017-3866-6

    CrossRef Google Scholar

    [23] R. Lum and L. Chua, Global properties of continuous piecewise-linear vector fields, Part I: Simplest case in $\mathbb{{R}} ^{2}$, Int. J. Circuit Theory Appl., 1991, 19, 251-307. doi: 10.1002/cta.4490190305

    CrossRef Google Scholar

    [24] J. Stoer and R. Burlish, Introduction to numerical analysis, Springer-Verlag, New York, 1980.

    Google Scholar

    [25] Q. Zhao, J. Yu, Limit cycles of a class of discontinuous planar piecewise linear systems with three regions of Y -type, J. Qual. Theory Dyn. Syst., 2019. DOI: https://doi.org/10.1007/s12346-019-00326-8.

    Google Scholar

Figures(6)  /  Tables(1)

Article Metrics

Article views(2720) PDF downloads(504) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint