2019 Volume 9 Issue 5
Article Contents

Liqiong Pu, Badradeen Adam, Zhigui Lin. EXTINCTION IN A NONAUTONOMOUS COMPETITIVE SYSTEM WITH TOXIC SUBSTANCE AND FEEDBACK CONTROL[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1838-1854. doi: 10.11948/20180329
Citation: Liqiong Pu, Badradeen Adam, Zhigui Lin. EXTINCTION IN A NONAUTONOMOUS COMPETITIVE SYSTEM WITH TOXIC SUBSTANCE AND FEEDBACK CONTROL[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1838-1854. doi: 10.11948/20180329

EXTINCTION IN A NONAUTONOMOUS COMPETITIVE SYSTEM WITH TOXIC SUBSTANCE AND FEEDBACK CONTROL

  • Corresponding author: Email address: zglin68@hotmail.com(Z. Lin)
  • Fund Project: The work is partially supported by the NNSF of China (Grant No. 11771381) and Research Foundation of Young Teachers of Hexi University(QN2018013)
  • This paper deals with a nonautonomous competitive system with infinite delays and feedback control. Sufficient conditions for the permanence of the system are first obtained. By constructing a suitable Lyapunov function, we obtain the sufficient conditions which guarantee that one of the components is driven to extinction. Our result shows that feedback control have an influence on the extinction of the system. Examples together with their numerical simulations illustrate the feasibility of our main results.
    MSC: 34C25, 92D25, 34D20, 34D40
  • 加载中
  • [1] L. Chen and F. Chen, Extinction in a discrete Lotka-Volterra competitive system with the effect of toxic substances and feedback controls, Int. J. Biomath., 2015, 8(1), 1-13.

    Google Scholar

    [2] F. Chen, Z. Li and Y. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal. Real World Appl., 2007, 8(2), 680-687. doi: 10.1016/j.nonrwa.2006.02.006

    CrossRef Google Scholar

    [3] J. Chattopadhyay, Effect of toxic substances on a two-species competitive system, Ecol. Model., 1996, 84(1-3), 287-289. doi: 10.1016/0304-3800(94)00134-0

    CrossRef Google Scholar

    [4] F. Chen, X. Xie, Z. Miao, et al., Extinction in two species nonautonomous nonlinear competitive systems, Appl. Math. Comput., 2016, 274(1), 119-124.

    Google Scholar

    [5] T. Faria and Y. Muroya, Global attractivity and extinction for Lotka-Volterra systems with infinite delay and feedback controls, Proc. Roy. Soc. of Edinburgh Sect. A, 2015, 145(2), 301-330. doi: 10.1017/S0308210513001194

    CrossRef Google Scholar

    [6] J. Hale, Theory of functional differential equations, Springer, Heidelberg, 1977.

    Google Scholar

    [7] H. Hu, Z. Teng and S. Gao, Extinction in nonautonomous Lotka-Volterra competitive system with pure-delays and feedback controls, Nonlinear Anal. Real World Appl., 2009, 10(4), 2508-2520. doi: 10.1016/j.nonrwa.2008.05.011

    CrossRef Google Scholar

    [8] H. Hu, Z. Teng and H. Jiang, On the permanence in nonautonomous Lotka-Volterra competitive systems with pure-delays and feedback controls, Nonlinear Anal. Real World Appl., 2009, 10(3), 1803-1815. doi: 10.1016/j.nonrwa.2008.02.017

    CrossRef Google Scholar

    [9] H. Hu, Z. Teng and H. Jiang, Permanence of the nonautonomous competitive systems with infinite delays and feedback control, Nonlinear Anal. Real World Appl., 2009, 10(4), 2420-2433. doi: 10.1016/j.nonrwa.2008.04.022

    CrossRef Google Scholar

    [10] D. Jana, P. Dolai, A.K. Pal, G.P. Samanta, On the stability and Hopf-bifurcation of a multi-delayed competitive population system affected by toxic substances with imprecise biological parameters, Modeling Earth Systems Environment, 2016, 2(3), 110. doi: 10.1007/s40808-016-0156-0

    CrossRef Google Scholar

    [11] Z. Li and F. Chen, Extinction in two dimensional nonautonomous Lotka-Volterra systems with the effect of toxic substances, Appl. Math. Comput., 2006, 182(1) 684-690.

    Google Scholar

    [12] Z. Liu, J. Hui and J. Wu, Permanence and partial extinction in an impulsive delay competitive system with the effect of toxic substances, J. Math. Chem., 2009, 46(4), 1213-1231. doi: 10.1007/s10910-008-9513-1

    CrossRef Google Scholar

    [13] F. Montes de Oca and M. Vival, Extinction in a two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal., Real World Appl., 2006, 7(5), 1042-1047.

    Google Scholar

    [14] F. Montes de Oca and M. Zeeman, Extinction in nonautonomous competitive Lotka-Volterra systems, P. Am. Math. Soc., 1996, 124(12), 3677-3687.

    Google Scholar

    [15] A. K. Pal, P. Dolai and G. P. Samanta, Dynamics of a delayed competitive system affected by toxic substances with imprecise biological parameters, Filomat, 2017, 31(16), 5271-5293. doi: 10.2298/FIL1716271P

    CrossRef Google Scholar

    [16] G. P. Samanta, Analysis of nonautonomous two species system in a polluted environment, Math. Slovaca, 2012, 62(3), 567-5886.

    Google Scholar

    [17] G. P. Samanta, Analysis of a nonautonomous delayed predator-prey system with a stage structure for the predator in a polluted environment, Int. J. Math. Math. Sci., 2010, 2010, Article ID 891812, 18 pages.

    Google Scholar

    [18] G. P. Samanta, Analysis of a delay nonautonomous predator-prey system with disease in the prey, Nonlinear Anal. Model. Control, 2010, 15(1), 97-108. doi: 10.15388/NA.2010.15.1.14367

    CrossRef Google Scholar

    [19] G. P. Samanta, A Stochastic Two Species Competition Model: Nonequilibrium Fluctuation and Stability, Int. J. Stoch. Anal., 2011, 2011, Article ID 489386, 7 pages.

    Google Scholar

    [20] C. Shi, Y. Wang, X. Chen, et al., Note on the persistence of a nonautonomous Lotka-Volterra competitive system with infinite delay and feedback controls, Discrete Dyn. Nat. Soc., 2014, 2014, Article ID 682769, 9 pages.

    Google Scholar

    [21] Z. Teng and Z. Li, Permanence and asymptotic behavior of the n-species nonautonomous Lotka-Volterra competitive systems, Comput. Math. Appl., 2000, 39(7-8), 107-116. doi: 10.1016/S0898-1221(00)00069-9

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(2606) PDF downloads(456) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint