2019 Volume 9 Issue 5
Article Contents

Chengbo Zhai, Yuqing Liu. AN INTEGRAL BOUNDARY VALUE PROBLEM OF CONFORMABLE INTEGRO-DIFFERENTIAL EQUATIONS WITH A PARAMETER[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1872-1883. doi: 10.11948/20180335
Citation: Chengbo Zhai, Yuqing Liu. AN INTEGRAL BOUNDARY VALUE PROBLEM OF CONFORMABLE INTEGRO-DIFFERENTIAL EQUATIONS WITH A PARAMETER[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1872-1883. doi: 10.11948/20180335

AN INTEGRAL BOUNDARY VALUE PROBLEM OF CONFORMABLE INTEGRO-DIFFERENTIAL EQUATIONS WITH A PARAMETER

  • Corresponding author: Email address:cbzhai@sxu.edu.cn(C. Zhai) 
  • Fund Project: The research was supported by the Youth Science Foundation of China(11201272) and Shanxi Province Science Foundation (2015011005)
  • In this article, we consider some properties of positive solutions for a new conformable integro-differential equation with integral boundary conditions and a parameter $ \left\{ \begin{array}{l} T_{\alpha}u(t)+\lambda f(t,u(t),I_{\alpha}u(t)) = 0,t\in[0,1],\\ u(0) = 0,u(1) = \beta\int_{0}^{1}u(t)dt ,\beta\in[\frac 32,2), \ \end{array}\right.\nonumber $ where $ \alpha\in(1,2] $, $ \lambda $ is a positive parameter, $ T_{\alpha} $ is the usual conformable derivative and $ I_{\alpha} $ is the conformable integral, $ f:[0,1]\times\bf{R^{+}}\times\bf{R^{+}}\rightarrow \bf{R^{+}} $ is a continuous function, where $ \bf{R^{+}} = [0,+\infty) $. We use a recent fixed point theorem for monotone operators in ordered Banach spaces, and then establish the existence and uniqueness of positive solutions for the boundary value problem. Further, we give an iterative sequence to approximate the unique positive solution and some good properties of positive solution about the parameter $ \lambda $. A concrete example is given to better demonstrate our main result.
    MSC: 26A33, 34A08, 34B18, 34B15
  • 加载中
  • [1] Z. Bai, Y. Chen, H. Lian and S. Sun, On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17, 1175–1187.

    Google Scholar

    [2] B. Oldham and J. Spanier, The fractional calculus. Academic, New York, 1974.

    Google Scholar

    [3] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.

    Google Scholar

    [4] A. Tenreiro Machado, V. Kiryakova and F. Mainardi, A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal., 2010, 13(3), 329–334.

    Google Scholar

    [5] J. West, Colloquium: Fractional calculus view of complexity: a tutorial, Rev. Mod. Phys., 2014, 86, 1169–1184. doi: 10.1103/RevModPhys.86.1169

    CrossRef Google Scholar

    [6] J. Tariboon, S.K. Ntouyas and P.Thiramanus, Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions, Int. J. Appl. Math. Stat., 2016, 54, 119–134.

    Google Scholar

    [7] J. Tariboon, S.K. Ntouyas and W. Sudsutad, Fractional integral problems for fractional differential equations via Caputo derivative, Adv. Differ. Equ., 2014, (2014)181, 1–17.

    Google Scholar

    [8] W. Zhong, Positive solutions for multipoint boundary value problem of fractional differential equations, Abstr. Appl. Anal., 2010, Article ID 601492, 1–15.

    Google Scholar

    [9] L. Magin, Fractional calculus in bioengineering, Connecticut: Begell House Publisher, Inc., 2006.

    Google Scholar

    [10] R. Khalil, M.A. Horani, et al, A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65–70. doi: 10.1016/j.cam.2014.01.002

    CrossRef Google Scholar

    [11] M. Abu Hammad and R.Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 2014, 13, 177–183.

    Google Scholar

    [12] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 2015, 279, 57–66. doi: 10.1016/j.cam.2014.10.016

    CrossRef Google Scholar

    [13] N. Katugampola, A new fractional derivative with classical properties, Preprint, 2014, e-print.arXiv: 1410.6535.

    Google Scholar

    [14] B. Bayour and D. F. M. Torres, Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., 2017, 312, 127–133. doi: 10.1016/j.cam.2016.01.014

    CrossRef Google Scholar

    [15] A. Souahi, A. Ben Makhlouf and M.A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indag. Math., 2017, 28, 1265–1274. doi: 10.1016/j.indag.2017.09.009

    CrossRef Google Scholar

    [16] W. Zhong and L. Wang, Basic theory of initial value problems of conformable fractional differential equations, Adv. Differ. Equ., 2018, (2018)321, 1–14.

    Google Scholar

    [17] H. Batarfi, J. Losada, J.J. Nieto and W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, J. Funct. Spaces, 2015, Art ID 706383, 1–6.

    Google Scholar

    [18] M. Ekici, M. Mirzazadeh, M. Eslami, et al, Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives, 2016, Optik, 127, 10659–10669.

    Google Scholar

    [19] S. Asawasamrit, S.K. Ntouyas and P. Thiramanus, J. Tariboon, Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Bound. Value Probl., 2016, (2016)122, 1–18.

    Google Scholar

    [20] W. Zhong and L. Wang, Positive solutions of conformable fractional differential equations with integral boundary conditions, Bound.Value Probl., 2018, 2018(137), 1–12.

    Google Scholar

    [21] Q. Song, X. Dong, Z. Bai and B. Chen, Existence for fractional Dirichlet boundary value problem under barrier strip conditions, J. Nonlinear Sci. Appl., 2017, 10, 3592–3598. doi: 10.22436/jnsa.010.07.19

    CrossRef Google Scholar

    [22] L. He, X. Dong, Z. Bai and B. Chen, Solvability of some two-point fractional boundary value problems under barrier strip conditions, J. Funct. Spaces, 2017, Art. ID 1465623, 1–6.

    Google Scholar

    [23] C. Zhai and F. Wang, Properties of positive solutions for the operator equation $Ax = lambda x$ and applicatons to fractional differential equations with integal boundary conditions, Adv. Differ. Equ., 2015, 2015(366), 1–10.

    $Ax = lambda x$ and applicatons to fractional differential equations with integal boundary conditions" target="_blank">Google Scholar

    [24] X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of $p-$Laplacian with fractional derivative, Boundary Value Problems, 2017, 2017(5), 1–15.

    $p-$Laplacian with fractional derivative" target="_blank">Google Scholar

Article Metrics

Article views(2429) PDF downloads(440) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint