Citation: | Chengbo Zhai, Yuqing Liu. AN INTEGRAL BOUNDARY VALUE PROBLEM OF CONFORMABLE INTEGRO-DIFFERENTIAL EQUATIONS WITH A PARAMETER[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1872-1883. doi: 10.11948/20180335 |
[1] | Z. Bai, Y. Chen, H. Lian and S. Sun, On the existence of blow up solutions for a class of fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17, 1175–1187. |
[2] | B. Oldham and J. Spanier, The fractional calculus. Academic, New York, 1974. |
[3] | I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999. |
[4] | A. Tenreiro Machado, V. Kiryakova and F. Mainardi, A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal., 2010, 13(3), 329–334. |
[5] | J. West, Colloquium: Fractional calculus view of complexity: a tutorial, Rev. Mod. Phys., 2014, 86, 1169–1184. doi: 10.1103/RevModPhys.86.1169 |
[6] | J. Tariboon, S.K. Ntouyas and P.Thiramanus, Riemann-Liouville fractional differential equations with Hadamard fractional integral conditions, Int. J. Appl. Math. Stat., 2016, 54, 119–134. |
[7] | J. Tariboon, S.K. Ntouyas and W. Sudsutad, Fractional integral problems for fractional differential equations via Caputo derivative, Adv. Differ. Equ., 2014, (2014)181, 1–17. |
[8] | W. Zhong, Positive solutions for multipoint boundary value problem of fractional differential equations, Abstr. Appl. Anal., 2010, Article ID 601492, 1–15. |
[9] | L. Magin, Fractional calculus in bioengineering, Connecticut: Begell House Publisher, Inc., 2006. |
[10] | R. Khalil, M.A. Horani, et al, A new definition of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65–70. doi: 10.1016/j.cam.2014.01.002 |
[11] | M. Abu Hammad and R.Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Int. J. Differ. Equ. Appl., 2014, 13, 177–183. |
[12] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 2015, 279, 57–66. doi: 10.1016/j.cam.2014.10.016 |
[13] | N. Katugampola, A new fractional derivative with classical properties, Preprint, 2014, e-print.arXiv: 1410.6535. |
[14] | B. Bayour and D. F. M. Torres, Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., 2017, 312, 127–133. doi: 10.1016/j.cam.2016.01.014 |
[15] | A. Souahi, A. Ben Makhlouf and M.A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indag. Math., 2017, 28, 1265–1274. doi: 10.1016/j.indag.2017.09.009 |
[16] | W. Zhong and L. Wang, Basic theory of initial value problems of conformable fractional differential equations, Adv. Differ. Equ., 2018, (2018)321, 1–14. |
[17] | H. Batarfi, J. Losada, J.J. Nieto and W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, J. Funct. Spaces, 2015, Art ID 706383, 1–6. |
[18] | M. Ekici, M. Mirzazadeh, M. Eslami, et al, Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives, 2016, Optik, 127, 10659–10669. |
[19] | S. Asawasamrit, S.K. Ntouyas and P. Thiramanus, J. Tariboon, Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Bound. Value Probl., 2016, (2016)122, 1–18. |
[20] | W. Zhong and L. Wang, Positive solutions of conformable fractional differential equations with integral boundary conditions, Bound.Value Probl., 2018, 2018(137), 1–12. |
[21] | Q. Song, X. Dong, Z. Bai and B. Chen, Existence for fractional Dirichlet boundary value problem under barrier strip conditions, J. Nonlinear Sci. Appl., 2017, 10, 3592–3598. doi: 10.22436/jnsa.010.07.19 |
[22] | L. He, X. Dong, Z. Bai and B. Chen, Solvability of some two-point fractional boundary value problems under barrier strip conditions, J. Funct. Spaces, 2017, Art. ID 1465623, 1–6. |
[23] | C. Zhai and F. Wang, Properties of positive solutions for the operator equation $Ax = lambda x$ and applicatons to fractional differential equations with integal boundary conditions, Adv. Differ. Equ., 2015, 2015(366), 1–10. |
[24] |
X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of $p-$Laplacian with fractional derivative, Boundary Value Problems, 2017, 2017(5), 1–15.
$p-$Laplacian with fractional derivative" target="_blank">Google Scholar |