2019 Volume 9 Issue 5
Article Contents

Xinyue Li, Qiulan Zhao. DECOMPOSING A NEW NONLINEAR DIFFERENTIAL-DIFFERENCE SYSTEM UNDER A BARGMANN IMPLICIT SYMMETRY CONSTRAINT[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1884-1900. doi: 10.11948/jaac20190003
Citation: Xinyue Li, Qiulan Zhao. DECOMPOSING A NEW NONLINEAR DIFFERENTIAL-DIFFERENCE SYSTEM UNDER A BARGMANN IMPLICIT SYMMETRY CONSTRAINT[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1884-1900. doi: 10.11948/jaac20190003

DECOMPOSING A NEW NONLINEAR DIFFERENTIAL-DIFFERENCE SYSTEM UNDER A BARGMANN IMPLICIT SYMMETRY CONSTRAINT

  • Corresponding author: Email address:xyli@sdust.edu.cn(X. Li)
  • Fund Project: The authors were supported by the Nature Science Foundation of China (No.11701334) and the Science and Technology plan project of the Educational Department of Shandong Province of China (No. J16LI12)
  • Firstly, a hierarchy of integrable lattice equations and its bi-Hamilt-onian structures are established by applying the discrete trace identity. Secondly, under an implicit Bargmann symmetry constraint, every lattice equation in the nonlinear differential-difference system is decomposed by an completely integrable symplectic map and a finite-dimensional Hamiltonian system. Finally, the spatial part and the temporal part of the Lax pairs and adjoint Lax pairs are all constrained as finite dimensional Liouville integrable Hamiltonian systems.
    MSC: 35Q51, 37J10, 37K10
  • 加载中
  • [1] V. I. Arnold, Mathematical Methods of Classical Mechanics Springer, Berlin, 1978.

    Google Scholar

    [2] S. Ahmad, A. R. Chowdhury, On the quasi-periodic solutions to the discrete nonlinear Schrodinger equation, J. Math. Phys., 1987, 28, 134–137. doi: 10.1063/1.527794

    CrossRef Google Scholar

    [3] C. W. Cao, Nonlinearization of the Lax system for AKNS hierarchy, Sci. China A, 1990, 33, 528–536.

    Google Scholar

    [4] S. T. Chen and W. X. Ma, Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation. Frontiers of Mathematics in China, 2018, 13, 1–10. doi: 10.1007/s11464-017-0677-5

    CrossRef Google Scholar

    [5] S. T. Chen and W. X. Ma, Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation, Comput. Math. Appl., 2018, 76, 1680–1685. doi: 10.1016/j.camwa.2018.07.019

    CrossRef Google Scholar

    [6] J. C. Chen, Z. Y. Ma and Y. H. Hu, Nonlocal symmetry, Darboux transformation and soliton cnoidal wave interaction solution for the shallow water wave equation, J. Math. Anal. Appl., 2018, 460, 987–1003. doi: 10.1016/j.jmaa.2017.12.028

    CrossRef Google Scholar

    [7] K. S. Chou and T. Wan, Asymptotic radial symmetry for solutions of $Au + e u = 0$ in a punctured disc, Pacific J. Math., 1994, 163, 269–276. doi: 10.2140/pjm.1994.163.269

    CrossRef Google Scholar

    [8] H. H. Dong, et al, A new integrable symplectic map and the lie point symmetry associated with nonlinear lattice equations, J. Nonlinear Sci. App., 2016, 9, 5107–5118. doi: 10.22436/jnsa.009.07.13

    CrossRef Google Scholar

    [9] B. Fuchssteiner, Mastersymmetries, Higher order time-dependent symmetries and conserved densities of nonlinear evolution equations, Prog. Theor. Phys., 1983, 70, 1508–1522. doi: 10.1143/PTP.70.1508

    CrossRef Google Scholar

    [10] A. S. Fokas, Symmetries and integrability, Stud. Appl. Math., 1987, 77, 253–299. doi: 10.1002/sapm1987773253

    CrossRef Google Scholar

    [11] L. Fu, Y. D. Chen and H. W. Yang. Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids. Mathematics, 2019, 7, 1–13.

    Google Scholar

    [12] Y. Fang, et al, Frobenius Integrable Decompositions Of Nonlinear Evolution Equations With Modified Term. Appl. Math. Compu., 2014, 226, 435–440.

    Google Scholar

    [13] B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 1981, 4, 47–66. doi: 10.1016/0167-2789(81)90004-X

    CrossRef Google Scholar

    [14] X. G. Geng, H. H. Dai and C. W. Cao, Algebro-geometric constructions of the discrete Ablowitz–Ladik flows and applications, J. Math. Phys., 2003, 44, 4573–4588. doi: 10.1063/1.1605820

    CrossRef Google Scholar

    [15] M. Guo, et al, The time-fractional mZK equation for gravity solitary waves and solutions using sech-tanh and radial basic function method, Nonlinear Anal. Model., 2019, 24, 1–19.

    Google Scholar

    [16] R. Hirota, Nonlinear partial difference equations. I.Adifference analogue of theKorteweg-de Vries equation, J. Phys. Soc., Japan, 1977, 43, 1424–1433.

    Google Scholar

    [17] J. S. He, J. Yu and Y. Cheng, Binary nonlinearization of the super AKNS system, Mod. Phys. Lett. B, 2008, 22, 275–288. doi: 10.1142/S0217984908014778

    CrossRef Google Scholar

    [18] M. A. Han, et al, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real, 2019, 47, 236–250. doi: 10.1016/j.nonrwa.2018.10.012

    CrossRef Google Scholar

    [19] B. B. Hu, et al, Nonlinear integrable couplings of a generalized super Ablowitz-Kaup-Newell-Segur hierarchy and its super bi-Hamiltonian structures, Math. Meth. Appl. Sci., 2018, 41, 1565–1577. doi: 10.1002/mma.4686

    CrossRef Google Scholar

    [20] J. T. Ha, H. Q. Zhang and Q. L. Zhao, Exact solutions for a Dirac-type equation with N-fold Darboux transformation, J. Appl. Anal. Comput., 2019, 9, 200–210.

    Google Scholar

    [21] C. Z. Li and J. P. Cheng, Quantum torus symmetries of multicomponent modified KP hierarchy and reductions, J. Geom. Phys., 2019, 137, 76–86. doi: 10.1016/j.geomphys.2018.12.003

    CrossRef Google Scholar

    [22] C. N. Lu, C. Fu and H. W. Yang, Time-fractional generalized Boussinesq Equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Appl. Math. Comput., 2018, 327, 104–116.

    Google Scholar

    [23] M. S. Liu, X. Y. Li and Q. L. Zhao, Exact solutions to Euler equation and Navier–Stokes equation, Z. Angew. Math. Phys., 2019, 70(43), 1–13.

    Google Scholar

    [24] Y. S. Li and W. X. Ma, Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints, Chaos, Solitons and Fractals, 2000, 11, 697–710. doi: 10.1016/S0960-0779(98)00173-8

    CrossRef Google Scholar

    [25] X. Y. Li and Q. L. Zhao, A new integrable symplectic map by the binary nonlinearization to the super AKNS system, J. Geom. Phys., 2017, 121, 123–137. doi: 10.1016/j.geomphys.2017.07.010

    CrossRef Google Scholar

    [26] X. Y. Li, et al, Binary bargmann symmetry constraint sssociated with 3$times$3 discrete matrix spectral problem, J. Nonlinear Sci. App., 2015, 8, 496–506. doi: 10.22436/jnsa.008.05.05

    CrossRef Google Scholar

    [27] W. X. Ma, K-symmetries and z-symmetries of evolution equations and their Lie algebras, J. Phys. A., 1990, 23, 2707–2716. doi: 10.1088/0305-4470/23/13/011

    CrossRef Google Scholar

    [28] W. X. Ma, Symmetry constraint of MKdV equations by binary nonlinearization, Physica A, 1995, 219, 467–481. doi: 10.1016/0378-4371(95)00161-Y

    CrossRef Google Scholar

    [29] W. X. Ma, Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phy., 2018, 133, 10–16. doi: 10.1016/j.geomphys.2018.07.003

    CrossRef Google Scholar

    [30] W. X. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 2019, 9.

    Google Scholar

    [31] W. X. Ma, Lump and interaction solutions of linear PDEs in (3+1)-dimensions, E. Asian J. Appl. Math., 2019, 9, 185–194. doi: 10.4208/eajam.100218.300318

    CrossRef Google Scholar

    [32] W. X. Ma, Lump and interaction solutions to linear (4+1)-dimensional PDEs, Acta Math. Sci., 2019, 39, 498–508.

    Google Scholar

    [33] W. X. Ma, J. Li and C. M. Khalique, A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)-dimensions, Complexity, 2018, 2018, 9059858–7.

    Google Scholar

    [34] W. X. Ma and W. Strampp, A explicit symmetry constraint for Lax pairs and the adjoint Lax pairs of AKNS systems, Phys. Lett. A., 1994, 185, 277–286. doi: 10.1016/0375-9601(94)90616-5

    CrossRef Google Scholar

    [35] W. X. Ma, X. L. Yong and H. Q. Zhang, Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Compu. Math. Appl., 2018, 75, 289–295. doi: 10.1016/j.camwa.2017.09.013

    CrossRef Google Scholar

    [36] W. X. Ma and R. G. Zhou, Adjoint Symmetry Constraints Leading to Binary Nonlinearization, J. Nonlinear Math. Phys., 2002, 9, 106–126. doi: 10.2991/jnmp.2002.9.s1.10

    CrossRef Google Scholar

    [37] W. X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Diff. Equ., 2018, 264, 2633–2659. doi: 10.1016/j.jde.2017.10.033

    CrossRef Google Scholar

    [38] H. Y. Ruan and S. Y. Lou, New symmetries of the Jaulent-Miodek hierarchy, J. Phys. Soc. Jpn., 1993, 62, 1917–1921. doi: 10.1143/JPSJ.62.1917

    CrossRef Google Scholar

    [39] Y. W. Ren, et al, Analytical research of (3+1)-dimensional Rossby waves with dissipation effect in cylindrical coordinate based on Lie symmetry approach, Adv. Diff. Equ., 2019, 2019 13–21. doi: 10.1186/s13662-019-1952-4

    CrossRef Google Scholar

    [40] A. B. Shabat and A.V. Mikhailov, Symmetries, test of integrability, in: Important Developments in Soliton Theory, Springer Series in Nonlinear Dynamics, Eds. A.S. Fokas and V.E. Zakharov (Springer, Berlin, 1993), 355–374.

    Google Scholar

    [41] M. S. Tao and H. H. Dong, Algebro-Geometric Solutions for a discrete integrable equation, Discrete Dyn. Nat. Soc., 2017, 2017, 1–9.

    Google Scholar

    [42] M. S. Tao, et al, Symmetry analysis for three-dimensional dissipation Rossby waves, Adv. Differ. Equ., 2018, 2018, 300–310. doi: 10.1186/s13662-018-1768-7

    CrossRef Google Scholar

    [43] X. X. Xu, A Deformed Reduced Semi-Discrete Kaup-Newell Equation, The Related Integrable Family And Darboux Transformation, Appl. Math. Compu., 2015, 251, 275–283.

    Google Scholar

    [44] X. X. Xu and Y. P. Sun, An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation, J. Nonlinear Sci. Appl., 2017, 10, 3328–3343. doi: 10.22436/jnsa.010.06.42

    CrossRef Google Scholar

    [45] J. Yu, J. W. Han and J. S. He, Binary nonlinearization of the super AKNS system under an implicit symmetry constraint, J. Phys. A: Math. Theor., 2009, 42, 465201–465211. doi: 10.1088/1751-8113/42/46/465201

    CrossRef Google Scholar

    [46] J. Y. Yang, W. X. Ma and Z. Y. Qin, Lump and lump-soliton solutions to the (2 + 1) dimensional Ito equation, Anal. Math. Phys., 2017, 1, 1–10.

    Google Scholar

    [47] X. E. Zhang, Y. Chen and Y. Zhang, Breather, lump and X soliton solutions to nonlocal KP equation, Comput. Math. Appl., 2017, 74, 2341–2347. doi: 10.1016/j.camwa.2017.07.004

    CrossRef Google Scholar

    [48] Y. Zhang, et al, Rational solutions and lump solutions to the generalized(3 + 1)-dimensional Shallow Water-like equation, Comput. Math. Appl., 2017, 73, 246–252. doi: 10.1016/j.camwa.2016.11.009

    CrossRef Google Scholar

    [49] Q. L. Zhao and X. Y. Li, A Bargmann system and the involutive solutions associated with a new 4-Order lattice hierarchy, Anal. Math. Phys., 2016, 6, 237–254. doi: 10.1007/s13324-015-0116-2

    CrossRef Google Scholar

    [50] Q. L. Zhao, Y. X. Li and F. S. Liu, Two integrable lattice hierarchies and their respective Darboux transformations, Appl. Math. Compu., 2013, 219, 5693–5705.

    Google Scholar

    [51] J. B. Zhang and W. X. Ma, Mixed lump-kink solutions to the BKP equation, Compu. Math. Appl., 2017, 74, 591–596. doi: 10.1016/j.camwa.2017.05.010

    CrossRef Google Scholar

    [52] H. Q. Zhao and W. X. Ma, Mixed lump-kink solutions to the KP equation, Compu. Math. Appl., 2017, 74, 1399–1405. doi: 10.1016/j.camwa.2017.06.034

    CrossRef Google Scholar

    [53] L. J. Zhang, et al, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Comput., 2018, 8, 1938–1958.

    Google Scholar

    [54] N. Zhang, T. C. Xia and Q. Y. Jin, N-Fold Darboux transformation of the discrete Ragnisco Tu system, Adv. Differ. Equ., 2018, 2018, 302–312. doi: 10.1186/s13662-018-1751-3

    CrossRef Google Scholar

Article Metrics

Article views(2094) PDF downloads(398) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint