[1]
|
X. Chen, V.G. Romanovski and W. Zhang, Critical periods of perturbations of reversible rigidly isochronous centers, J. Differential Equations, 2011, 251, 1505–1525. doi: 10.1016/j.jde.2011.05.022
CrossRef Google Scholar
|
[2]
|
X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 2009, 232, 565–581. doi: 10.1016/j.cam.2009.06.029
CrossRef Google Scholar
|
[3]
|
C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 1987, 69 (3), 310–321. doi: 10.1016/0022-0396(87)90122-7
CrossRef Google Scholar
|
[4]
|
C. Chicone and F. Dumortier, A quadratic system with a nonmonotonic period function, Proc. Amer. Math. Soc., 1988, 102 (3), 706–710. doi: 10.1090/S0002-9939-1988-0929007-7
CrossRef Google Scholar
|
[5]
|
S.-N. Chow and D. Wang, On the monotonicity of the period function of some second order equations, Časopis Pãst. Mat., 1986, 111 (1), 14-25.
Google Scholar
|
[6]
|
C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc., 1989, 312, 433–486. doi: 10.1090/S0002-9947-1989-0930075-2
CrossRef Google Scholar
|
[7]
|
B. Ferčec, V. Levandovskyyb, V. G. Romanovski and D. S. Shafer, Bifurcation of critical periods of polynomial systems, J. Differential Equations, 2015, 259, 3825–3853. doi: 10.1016/j.jde.2015.05.004
CrossRef Google Scholar
|
[8]
|
A. Gasull and R. Prohens, Quadratic and cubic systems with degenerate infinity, J. Math. Anal. Appl., 1996, 198, 25–34. doi: 10.1006/jmaa.1996.0065
CrossRef Google Scholar
|
[9]
|
D. E. Knuth, The Art of Computer Programming, Vol. 2/ Seminumerical Algorithms, Addison-Wesley, Reading-London-Amsterdam, 1969.
Google Scholar
|
[10]
|
N. Li and M. Han, Critical period bifurcation by perturbing a reversible rigidly isochronous center with multiple parameters, Internat. J. Bifur. Chaos, 2015, 25 (5), 11 pages (1550070).https://www.researchgate.net/publication/277934381_Critical_Period_Bifurcation_by_Perturbing_a_Reversible_Rigidly_Isochronous_Center_with_Multiple_Parameters
Google Scholar
|
[11]
|
C. Liu and M. Han, Bifurcation of critical periods from the reversible rigidly isochronous centers, Nonlinear Anal., 2014, 95, 388–403. doi: 10.1016/j.na.2013.09.025
CrossRef Google Scholar
|
[12]
|
N. G. Lloyd, C. J. Christopher, J. Devlin, J. M. Pearson and N. Yasmin, Quadratic-like cubic systems, Diff. Eqn. Dynam. Systems, 1997, 5, 329–345.
Google Scholar
|
[13]
|
J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions, SIAM Rev., 1996, 38, 619–636. doi: 10.1137/S0036144595283575
CrossRef Google Scholar
|
[14]
|
L. Peng and Z. Feng, Bifurcation of critical periods from a quartic isochronous center, Internat. J. Bifur. Chaos, 2014, 24 (6), 16 pages (1450089).https://www.researchgate.net/publication/266986594_Bifurcation_of_Critical_Periods_from_a_Quartic_Isochronous_Center
Google Scholar
|
[15]
|
C. Rousseau and B. Toni, Local bifurcation of critical periods in vector fields with homogeneous nonlinearities of the third degree, Canad. Math. Bull., 1993, 36, 473–484. doi: 10.4153/CMB-1993-063-7
CrossRef Google Scholar
|
[16]
|
C. Rousseau and B. Toni, Local bifurcation of critical periods in the reduced Kukles system, Canad. Math. Bull., 1997, 49, 338–358. doi: 10.4153/CJM-1997-017-4
CrossRef Google Scholar
|
[17]
|
J. Sotomayor, Curvas Definidas por Equacoes Diferenciais no Plano, IMPA, Rio de Janeiro., 1981.
Google Scholar
|
[18]
|
J. Villadelprat, Bifurcation of local critical periods in the generalized Loud's system, Appl. Math. Comput., 2012, 218, 6803–6813.
Google Scholar
|
[19]
|
Z. Wang, X. Chen and W. Zhang, Local Bifurcations of Critical Periods in a Generalized 2-D LV System, Appl. Math. Comput., 2009, 214, 17–25.
Google Scholar
|
[20]
|
P. Yu, M. Han and J. Zhang, Critical periods of third-order planar Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2010, 20, 2213–2224. doi: 10.1142/S0218127410027040
CrossRef Google Scholar
|
[21]
|
W. Zhang, X. Hou and Z. Zeng, Weak center and bifurcation of critical periods in reversible cubic systems, Comput. Math. Appl., 2000, 40, 771–782. doi: 10.1016/S0898-1221(00)00195-4
CrossRef Google Scholar
|
[22]
|
L. Zou, X. Chen and W. Zhang, Local bifurctions of critical periods for cubic Liénard equations with cubic damping, J. Comput. Appl. Math., 2008, 222, 404–410. doi: 10.1016/j.cam.2007.11.005
CrossRef Google Scholar
|