2019 Volume 9 Issue 5
Article Contents

Zhiheng Yu, Zhaoxia Wang. LOCAL BIFURCATION OF CRITICAL PERIODS IN QUADRATIC-LIKE CUBIC SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1901-1926. doi: 10.11948/20190005
Citation: Zhiheng Yu, Zhaoxia Wang. LOCAL BIFURCATION OF CRITICAL PERIODS IN QUADRATIC-LIKE CUBIC SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1901-1926. doi: 10.11948/20190005

LOCAL BIFURCATION OF CRITICAL PERIODS IN QUADRATIC-LIKE CUBIC SYSTEMS

  • Corresponding author: Email address:wzx 0909@163.com (Z. Wang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (grant number 11501083 and 11701476) and the Fundamental Research Funds for the Central Universities (grant Number 2682018CX63)
  • In this paper, we investigate quadratic-like cubic systems having a center at $ O $ for the local bifurcation of critical periods. We provide an inductive algorithm to compute polynomials of periodic coefficients, find structures of solutions for systems of algebraic equations corresponding to weak centers of finite order, and derive conditions on parameters under which the considered equilibrium is a weak center of order $ k $, $ k = 0,1,2,3,4 $. Furthermore, we show that with appropriate perturbations, at most four critical periods bifurcate from the weak center of finite order, and we give conditions under which exactly $ k $ critical periods bifurcate from the center $ O $ for each integer $ k = 1,2,3,4 $.
    MSC: 34C07, 34C23
  • 加载中
  • [1] X. Chen, V.G. Romanovski and W. Zhang, Critical periods of perturbations of reversible rigidly isochronous centers, J. Differential Equations, 2011, 251, 1505–1525. doi: 10.1016/j.jde.2011.05.022

    CrossRef Google Scholar

    [2] X. Chen and W. Zhang, Decomposition of algebraic sets and applications to weak centers of cubic systems, J. Comput. Appl. Math., 2009, 232, 565–581. doi: 10.1016/j.cam.2009.06.029

    CrossRef Google Scholar

    [3] C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 1987, 69 (3), 310–321. doi: 10.1016/0022-0396(87)90122-7

    CrossRef Google Scholar

    [4] C. Chicone and F. Dumortier, A quadratic system with a nonmonotonic period function, Proc. Amer. Math. Soc., 1988, 102 (3), 706–710. doi: 10.1090/S0002-9939-1988-0929007-7

    CrossRef Google Scholar

    [5] S.-N. Chow and D. Wang, On the monotonicity of the period function of some second order equations, Časopis Pãst. Mat., 1986, 111 (1), 14-25.

    Google Scholar

    [6] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc., 1989, 312, 433–486. doi: 10.1090/S0002-9947-1989-0930075-2

    CrossRef Google Scholar

    [7] B. Ferčec, V. Levandovskyyb, V. G. Romanovski and D. S. Shafer, Bifurcation of critical periods of polynomial systems, J. Differential Equations, 2015, 259, 3825–3853. doi: 10.1016/j.jde.2015.05.004

    CrossRef Google Scholar

    [8] A. Gasull and R. Prohens, Quadratic and cubic systems with degenerate infinity, J. Math. Anal. Appl., 1996, 198, 25–34. doi: 10.1006/jmaa.1996.0065

    CrossRef Google Scholar

    [9] D. E. Knuth, The Art of Computer Programming, Vol. 2/ Seminumerical Algorithms, Addison-Wesley, Reading-London-Amsterdam, 1969.

    Google Scholar

    [10] N. Li and M. Han, Critical period bifurcation by perturbing a reversible rigidly isochronous center with multiple parameters, Internat. J. Bifur. Chaos, 2015, 25 (5), 11 pages (1550070).https://www.researchgate.net/publication/277934381_Critical_Period_Bifurcation_by_Perturbing_a_Reversible_Rigidly_Isochronous_Center_with_Multiple_Parameters

    Google Scholar

    [11] C. Liu and M. Han, Bifurcation of critical periods from the reversible rigidly isochronous centers, Nonlinear Anal., 2014, 95, 388–403. doi: 10.1016/j.na.2013.09.025

    CrossRef Google Scholar

    [12] N. G. Lloyd, C. J. Christopher, J. Devlin, J. M. Pearson and N. Yasmin, Quadratic-like cubic systems, Diff. Eqn. Dynam. Systems, 1997, 5, 329–345.

    Google Scholar

    [13] J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions, SIAM Rev., 1996, 38, 619–636. doi: 10.1137/S0036144595283575

    CrossRef Google Scholar

    [14] L. Peng and Z. Feng, Bifurcation of critical periods from a quartic isochronous center, Internat. J. Bifur. Chaos, 2014, 24 (6), 16 pages (1450089).https://www.researchgate.net/publication/266986594_Bifurcation_of_Critical_Periods_from_a_Quartic_Isochronous_Center

    Google Scholar

    [15] C. Rousseau and B. Toni, Local bifurcation of critical periods in vector fields with homogeneous nonlinearities of the third degree, Canad. Math. Bull., 1993, 36, 473–484. doi: 10.4153/CMB-1993-063-7

    CrossRef Google Scholar

    [16] C. Rousseau and B. Toni, Local bifurcation of critical periods in the reduced Kukles system, Canad. Math. Bull., 1997, 49, 338–358. doi: 10.4153/CJM-1997-017-4

    CrossRef Google Scholar

    [17] J. Sotomayor, Curvas Definidas por Equacoes Diferenciais no Plano, IMPA, Rio de Janeiro., 1981.

    Google Scholar

    [18] J. Villadelprat, Bifurcation of local critical periods in the generalized Loud's system, Appl. Math. Comput., 2012, 218, 6803–6813.

    Google Scholar

    [19] Z. Wang, X. Chen and W. Zhang, Local Bifurcations of Critical Periods in a Generalized 2-D LV System, Appl. Math. Comput., 2009, 214, 17–25.

    Google Scholar

    [20] P. Yu, M. Han and J. Zhang, Critical periods of third-order planar Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2010, 20, 2213–2224. doi: 10.1142/S0218127410027040

    CrossRef Google Scholar

    [21] W. Zhang, X. Hou and Z. Zeng, Weak center and bifurcation of critical periods in reversible cubic systems, Comput. Math. Appl., 2000, 40, 771–782. doi: 10.1016/S0898-1221(00)00195-4

    CrossRef Google Scholar

    [22] L. Zou, X. Chen and W. Zhang, Local bifurctions of critical periods for cubic Liénard equations with cubic damping, J. Comput. Appl. Math., 2008, 222, 404–410. doi: 10.1016/j.cam.2007.11.005

    CrossRef Google Scholar

Article Metrics

Article views(2678) PDF downloads(478) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint