2019 Volume 9 Issue 1
Article Contents

Shangquan Bu, Gang Cai. WELL-POSEDNESS OF DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN HÖLDER CONTINUOUS FUNCTION SPACES[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 187-199. doi: 10.11948/2019.187
Citation: Shangquan Bu, Gang Cai. WELL-POSEDNESS OF DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN HÖLDER CONTINUOUS FUNCTION SPACES[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 187-199. doi: 10.11948/2019.187

WELL-POSEDNESS OF DEGENERATE DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN HÖLDER CONTINUOUS FUNCTION SPACES

  • Author Bio: Email address:sbu@math.tsinghua.edu.cn(S. Bu)
  • Corresponding author: Email address:caigang-aaaa@163.com(G. Cai)
  • Fund Project: The authors were supported by the NSF of China (Grant No. 11571194, 11731010, 11771063), the Natural Science Foundation of Chongqing(Grant No. cstc2017jcyjAX0006), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJ1703041, KJZDM201800501), the University Young Core Teacher Foundation of Chongqing (Grant No. 020603011714), Talent Project of Chongqing Normal University (Grant No. 02030307-00024)
  • Using operator-valued $ \dot{C}^\alpha $-Fourier multiplier results on vector- valued Hölder continuous function spaces, we give a characterization for the $ C^\alpha $-well-posedness of the first order degenerate differential equations with infinite delay $ (Mu)'(t) = Au(t) + \int_{-\infty}^t a(t-s)Au(s)ds + f(t) $ ($ t\in{\mathbb R} $), where $ A, M $ are closed operators on a Banach space $ X $ such that $ D(A)\cap D(M)\neq \{0\} $, $ a\in L^1_{\rm{loc}}({\mathbb R}_+)\cap L^1(\mathbb{R}_+; t^\alpha dt) $.
    MSC: 34G10, 47D06, 47A10, 34K30
  • 加载中
  • [1] W. Arendt, C. Batty and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, Studia Math., 2004, 160, 23–51. doi: 10.4064/sm160-1-2

    CrossRef Google Scholar

    [2] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel, 2001.https://link.springer.com/article/10.1007/BF02774144

    Google Scholar

    [3] V. Barbu and A. Favini, Periodic problems for degenerate differential equations, Rend. Ist. Mat. Univ. Trieste XXVIII (Suppl.), 1997, 29–57.

    Google Scholar

    [4] H. Bŕezis, Analyse Fonctionnelle, Paris, Masson, 1983.

    Google Scholar

    [5] J. Bourgain, A Hausdorff-Young inequality for B-convex Banach spaces, Pacific J. Math., 1982, 101(2), 255–262. doi: 10.2140/pjm

    CrossRef Google Scholar

    [6] J. Bourgain, Vector-valued Hausdorff-Young inequalities and applications, Geometric aspects of functional analysis (1986/87), Springer, Berlin, 1988, 239–249.https://link.springer.com/chapter/10.1007%2FBFb0081745

    Google Scholar

    [7] S. Bu, Well-posedness of second order degenerate differential equations in vector-valued function spaces, Studia Math., 2013, 214(1), 1–16.

    Google Scholar

    [8] S. Bu, Well-posedness of degenerate differential equations in Hölder continuous function spaces, Front. Math. China., 2015, 10(2), 239–248. doi: 10.1007/s11464-014-0368-4

    CrossRef Google Scholar

    [9] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Pure Appl. Math., Dekker, New York, 1999.http://www.ams.org/mathscinet-getitem?mr=1654663

    Google Scholar

    [10] V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Differ. Equations, 2006, 230, 634–660. doi: 10.1016/j.jde.2006.07.018

    CrossRef Google Scholar

    [11] S. Kwapien, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math., 1972, 44, 583–595. doi: 10.4064/sm-44-6-583-595

    CrossRef Google Scholar

    [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin, 1996.

    Google Scholar

    [13] C. Lizama and R. Ponce, Periodic solutions of degenerate differential equations in vector-valued function spaces, Studia Math., 2011, 202(1), 49–63. doi: 10.4064/sm202-1-3

    CrossRef Google Scholar

    [14] C. Lizama and R. Ponce, Maximal regularity for degenerate differential equations with infinite delay in periodic vector-valued function spaces, Proc. Edinb. Math. Soc., 2013, 56(3), 853–871. doi: 10.1017/S0013091513000606

    CrossRef Google Scholar

    [15] J. Peetre, Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Sem. Mat. Univ. Padova, 1969, 42, 15–26.

    Google Scholar

    [16] R. Ponce, Hölder continuous solutions for Sobolev type differential equations, Math. Nachr., 2014, 287(1), 70–78. doi: 10.1002/mana.v287.1

    CrossRef Google Scholar

    [17] R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity, J. Differ. Equations, 2013, 255, 3284–3304. doi: 10.1016/j.jde.2013.07.035

    CrossRef Google Scholar

Article Metrics

Article views(2792) PDF downloads(677) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint