2021 Volume 11 Issue 1
Article Contents

Shoufu Tian, Ding Guo, Xiubin Wang, Tiantian Zhang. TRAVELING WAVE, LUMP WAVE, ROGUE WAVE, MULTI-KINK SOLITARY WAVE AND INTERACTION SOLUTIONS IN A (3+1)-DIMENSIONAL KADOMTSEV - PETVIASHVILI EQUATION WITH BÄCKLUND TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 45-58. doi: 10.11948/20190086
Citation: Shoufu Tian, Ding Guo, Xiubin Wang, Tiantian Zhang. TRAVELING WAVE, LUMP WAVE, ROGUE WAVE, MULTI-KINK SOLITARY WAVE AND INTERACTION SOLUTIONS IN A (3+1)-DIMENSIONAL KADOMTSEV - PETVIASHVILI EQUATION WITH BÄCKLUND TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 45-58. doi: 10.11948/20190086

TRAVELING WAVE, LUMP WAVE, ROGUE WAVE, MULTI-KINK SOLITARY WAVE AND INTERACTION SOLUTIONS IN A (3+1)-DIMENSIONAL KADOMTSEV - PETVIASHVILI EQUATION WITH BÄCKLUND TRANSFORMATION

  • We consider a (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation. By using the Hirota bilinear operators, we construct the bilinear form of the equation. Based on the resulting bilinear form, we further derive the Bäcklund transformation and the traveling wave solutions of the equation. Furthermore, lump solutions are constructed by searching the positive function from the Hirota bilinear formalism. Meanwhile, we also obtain the interaction solutions between lump solutions and the stripe solitons. We discuss the influences of each parameters on these exact solutions by using several graphics. Finally, we successfully construct its rogue wave solutions and multi-kink solitary wave solutions. It is hoped that our results can be used to enrich the dynamical behavior of the (3+1)-dimensional KP-type equations.
    MSC: 35Q51, 35Q53, 35C99
  • 加载中
  • [1] M. Boiti, L. Martina and O.K. Pashaev, F. Pempineli, Dynamics of multidimensional solitons, Phys. Lett. A, 1991, 160, 55-63. doi: 10.1016/0375-9601(91)90205-M

    CrossRef Google Scholar

    [2] C. Dai and W. Huang, Multi-rogue wave and multi-braather solutions in PTsymmertric coupled waveguides, Appl. Math. Lett., 2014, 32, 35-40. doi: 10.1016/j.aml.2014.02.013

    CrossRef Google Scholar

    [3] M. Dong, S. Tian, X. Yan and L. Zou, Solitary waves, homoclinic breather waves and rogue waves of the (3+1)-dimensional Hirota bilinear equation, Comput. Math. Appl., 2018, 75(3), 957-964. doi: 10.1016/j.camwa.2017.10.037

    CrossRef Google Scholar

    [4] G. Ebadi, N. Y. Fard, A. H. Bhrawy, S. Kumar, H. Triki, A. Yildirim and A. Biswas, solitons and other solutions to the (3+1)-dimensional extended kadomtsev-petviashvili equation with power law nonlinearity, Rom. Rep. Phys., 2013, 65, 27-62.

    Google Scholar

    [5] L. Feng and T. Zhang, Breather wave, rouge wave and solitary wave solutions of a coupled nonlinear Schödinger equation, Appl. Math. Lett., 2018, 78, 133-140. doi: 10.1016/j.aml.2017.11.011

    CrossRef Google Scholar

    [6] D. Guo, S. Tian and T. Zhang, Integrability, soliton solutions and modulation instability analysis of a (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chain equation, Comput. Math. Appl., 2019, 77(3), 770-778. doi: 10.1016/j.camwa.2018.10.017

    CrossRef Google Scholar

    [7] Y. Gurefe, E. Misirli, Y. Pandir, A. Sonmezoglu and M. Ekici, New Exact Solutions of the Davey-Stewartson Equation with Power-Law Nonlinearity, Bull. Malays. Math. Sci. Soc., 2015, 38, 1223-1234. doi: 10.1007/s40840-014-0075-z

    CrossRef Google Scholar

    [8] C. Hamner, J. Chang, P. Engels and M. A. Hoefer, Generation of Dark-Bright Soliton Trains in Superfluid-Superfluid Counterflow, Phys. Rev. Lett., 2010, 106, 065302.

    Google Scholar

    [9] H. Jiang, J. Xiang, C. Dai and Y. Wang, Nonautonomous bright soliton solutions on continuous wave and cnoidal wave backgrounds in blood vessels, Nonlinear Dyn., 2014, 75, 201-207. doi: 10.1007/s11071-013-1058-6

    CrossRef Google Scholar

    [10] M. Jimbo and T. Miwa, Solitons and infinite dimensional lie algebras, Publ. Res. Inst. Mathe. Sci., 1983, 19, 943-1001. doi: 10.2977/prims/1195182017

    CrossRef Google Scholar

    [11] R. S. Johnson and S. Thompson, A solution of the inverse scattering problem for the Kadomtsev-Petviashvili equation by the method of separation of variables, Phys. Lett., 1978, 66(4), 279-281. doi: 10.1016/0375-9601(78)90236-0

    CrossRef Google Scholar

    [12] P. G. Korteweg and G. Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos Mag., 1895, 39, 422-443. doi: 10.1080/14786449508620739

    CrossRef Google Scholar

    [13] J. Li and Z. Qiao, Explicit soliton solutions of the Kaup-Kupershmidt equation through the dynamical system approach, J. Appl. Anal. Comput., 2011, 1(2), 243-250.

    Google Scholar

    [14] C. Li, J. He and K. Porseizan, Rogue waves of the Hirota and the Maxwell-Bloch equations, Phys. Rev. E, 2013, 87, 012913. doi: 10.1103/PhysRevE.87.012913

    CrossRef Google Scholar

    [15] W. Ma, Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phys., 2018, 133, 10-16. doi: 10.1016/j.geomphys.2018.07.003

    CrossRef Google Scholar

    [16] W. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differential Equations, 2018, 264, 2633-2659. doi: 10.1016/j.jde.2017.10.033

    CrossRef Google Scholar

    [17] W. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 2015, 379, 1975-1978. doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [18] W. Ma, Z. Qin and X. La, Lump soltions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dyn., 2016, 84(2), 923-931. doi: 10.1007/s11071-015-2539-6

    CrossRef Google Scholar

    [19] W. Ma and J. Yang, Lump solutions to the BKP equation by symbolic computation, Int. J. Mod. Phys. B, 2016, 30, 1640028. doi: 10.1142/S0217979216400282

    CrossRef Google Scholar

    [20] W. Ma and Z. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 2012, 218, 11871-11879.

    Google Scholar

    [21] W. Ma, Y. Zhang, Y. Tang and J. Tu, Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., 2012, 218(13), 7174-7183.

    Google Scholar

    [22] W. Ma and L. Zhang, Lump solutions with higher-order rational dispersion relations, Pramana. J. Phys., 2020, 94, ID0043.

    Google Scholar

    [23] W. Ma, Lump and interaction solutions to linear PDEs in (2+1) dimensions via symbolic computation, Modern Phys. Lett. B, 2019, 33(36), 1950457. doi: 10.1142/S0217984919504578

    CrossRef Google Scholar

    [24] L. Na, Bäcklund transformation and multi-soliton solutions for the (3+1)- dimensional BKP equation with Bell polynomials and symbolic computation, Nonlinear Dyn., 2015, 82(1-2), 311-318. doi: 10.1007/s11071-015-2159-1

    CrossRef Google Scholar

    [25] W. Peng, S. Tian and T. Zhang, On the Breather Waves, Rogue Waves and Solitary Waves to a Generalized (2+1)-dimensional Caudrey-Dodd-GibbonKotera-Sawada Equation, Filomat, 2018, 32(14), 4959-4969. doi: 10.2298/FIL1814959P

    CrossRef Google Scholar

    [26] W. Peng, S. Tian and T. Zhang, Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrodinger equation, EPL (Europhysics Letters), 2018, 123(5), 50005. doi: 10.1209/0295-5075/123/50005

    CrossRef Google Scholar

    [27] C. Qin, S. Tian, L. Zou and T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, J. Appl. Anal. Comput., 2018, 8(6), 1727-1746.

    Google Scholar

    [28] C. Qin, S. Tian, L. Zou and T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of fourth-order time fractional Burgers equation, J. Appl. Anal. Comput., 2018, 8(6), 1727-1746.

    Google Scholar

    [29] C. Qin, S. Tian, L. Zou and W. Ma, Solitary Wave and Quasi-Periodic Wave Solutions to a (3+1)-Dimensional Generalized Calogero-Bogoyavlenskii-Schiff Equation, Adv. Appl. Math. Mech., 2018, 10, 948-977. doi: 10.4208/aamm.OA-2017-0220

    CrossRef Google Scholar

    [30] S. Tian and H. Zhang, On the Integrability of a Generalized Variable-Coefficient Forced Korteweg-de Vries Equation in Fluids, Stud. Appl. Math., 2014, 132, 212-246. doi: 10.1111/sapm.12026

    CrossRef Google Scholar

    [31] X. Wang, S. Tian, C. Qin and T. Zhang, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, Proc. Amer. Math. Soc., 2018, 146(8), 3353-3365. doi: 10.1090/proc/13765

    CrossRef Google Scholar

    [32] X. Wang, S. Tian, L. Zou and T. Zhang, Dynamics of solitary waves and periodic waves in a (3+1)-dimensional nonlinear evolution equation, East Asian J. Appl. Math., 2018, 8(3), 477-497. doi: 10.4208/eajam.221017.250218

    CrossRef Google Scholar

    [33] X. Wang and S. Tian, Lie symmetry analysis, conservation laws and analytical solutions of the time-fractional thin-film equation, Comput. Appl. Math., 2018, 37(5), 6270-6282. doi: 10.1007/s40314-018-0699-y

    CrossRef Google Scholar

    [34] X. Wang, S. Tian, C. Qin and T. Zhang, Characteristics of the breathers, rogue waves and solitary waves in a generalized(2+1)-dimensional Boussinesq equation, EPL(Europhysics Letters), 2016, 115, 10002. doi: 10.1209/0295-5075/115/10002

    CrossRef Google Scholar

    [35] A. M. Wazwaz, Two forms of (3+1)dimensional B-type Kadomtsev-Petviashvili equation: multiple soliton solutions, Phys. Scr., 2012, 86(3), 035007. doi: 10.1088/0031-8949/86/03/035007

    CrossRef Google Scholar

    [36] A. M. Wazwaz and G. Xu, Negative-order modified KdV equations: multiple soliton and multiple singular soliton solution, Math. Methods Appl. Sci., 2016, 39, 661-667. doi: 10.1002/mma.3507

    CrossRef Google Scholar

    [37] X. Wen, Construction of new exact rational form non-travelling wave solutions to the (2+1)-dimensional generalized BroerKaup system, Appl. Math. Comput., 2010, 217, 1367-1375.

    Google Scholar

    [38] J. Yang, W. Ma and Z. Qin, Abundant mixed lump-soliton solutions of the BKP equation, East Asian J. Appl. Math., 2018, 8(2), 224-232. doi: 10.4208/eajam.210917.051217a

    CrossRef Google Scholar

    [39] X. Zhang and Y. Chen, Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation, Commun. Nonlinear Sci. Numer. Simul., 2017, 52, 24-31. doi: 10.1016/j.cnsns.2017.03.021

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(4238) PDF downloads(305) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint