[1]
|
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in ""Partail Differential Equations and Related Topics" (J. Goldstein, Ed.), Lecture Notes in Math., Springer- Verlag, New York, 1975, 466, 5-49.
Google Scholar
|
[2]
|
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 1978, 30, 33-76. doi: 10.1016/0001-8708(78)90130-5
CrossRef Google Scholar
|
[3]
|
P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 2007, 332, 428-440. doi: 10.1016/j.jmaa.2006.09.007
CrossRef Google Scholar
|
[4]
|
H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, I - Periodic framework, J. Eur. Math. Soc., 2005, 7, 172-213.
Google Scholar
|
[5]
|
H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, Ⅱ - General domains, J. Amer. Math. Soc., 2010, 23, 1-34. doi: 10.1090/S0894-0347-09-00633-X
CrossRef Google Scholar
|
[6]
|
H. Berestycki, F. Hamel and L. Roques, Analysis of periodically fragmented environment model: Ⅱ - Biological invasions and pulsating traveling fronts, J. Math. Pures Appl., 2005, 84, 1101-1146. doi: 10.1016/j.matpur.2004.10.006
CrossRef Google Scholar
|
[7]
|
H. Berestycki and G. Nadin, Asymptotic spreading for general heterogeneous Fisher-KPP type equations, Memoirs of the American Mathematical Society, In press.
Google Scholar
|
[8]
|
H. Berestycki, T. Jin and L. Silvestre, Propagation in a nonlocal reaction diffusion equation with spatial and genetic trait structure, Nonlinearity, 2016, 29(4), 1434-1466. doi: 10.1088/0951-7715/29/4/1434
CrossRef Google Scholar
|
[9]
|
R. S. Cantrell and C. Cosner, Spatial Ecology via Reactiond-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.
Google Scholar
|
[10]
|
E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl., 2006, 86, 271-291. doi: 10.1016/j.matpur.2006.04.005
CrossRef Google Scholar
|
[11]
|
C. Cortazar, J. Coville, M. Elgueta and S. Martinez, A nonlocal inhomogeneous dispersal process, J. Differential Equations, 2007, 241, 332-358. doi: 10.1016/j.jde.2007.06.002
CrossRef Google Scholar
|
[12]
|
R. Cousens, C. Dytham and R. Law, Dispersal in plants: a population perspective, Oxford University Press, Oxford, 2008.
Google Scholar
|
[13]
|
C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, American Mathematical Society, 1999, 70.
Google Scholar
|
[14]
|
M. Chugunova, B. Jadamba, C. Kao, C. Klymko, E. Thomas and B. Zhao, Study of a mixed dispersal population dynamics model. Topics in numerical partial differential equations and scientific computing, , IMA Vol. Math. Appl., Springer, New York, 2016, 160, 51-77.
Google Scholar
|
[15]
|
J. Coville and L. Dupaigne, Propagation speed of travelling fronts in non local reaction-diffusion equations, Nonlinear Analysis, 2005, 60, 797-819 doi: 10.1016/j.na.2003.10.030
CrossRef Google Scholar
|
[16]
|
J. Coville, J. Dávila, and S. Mart´ınez, Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity, SIAM J. Math. Anal., 2008, 39, 1693-1709. doi: 10.1137/060676854
CrossRef Google Scholar
|
[17]
|
P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, Springer-Verlag, Berlin-New York, 1979, 28.
Google Scholar
|
[18]
|
P. C. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in nonlinear analysis, Springer, Berlin, 2003, 153-191.
Google Scholar
|
[19]
|
P. C. Fife and L. A. Peletier, Nonlinear diffusion in population genetics, Arch. Rational Mech Anal., 1977, 64, 93-109. doi: 10.1007/BF00280092
CrossRef Google Scholar
|
[20]
|
R. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 1937, 7, 335-369.
Google Scholar
|
[21]
|
M. Freidlin and J. Gärtner, On the propagation of concentration waves in periodic and ramdom media, Soviet Math. Dokl., 1979, 20, 1282-1286.
Google Scholar
|
[22]
|
M. Grinfeld, G. Hines, V. Hutson, K. Mischaikow and G. T. Vickers, Non-local dispersal, Differential Integral Equations, 2005, 18, 1299-1320.
Google Scholar
|
[23]
|
F. Hamel, Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity, J. Math. Pures Appl., 2008, 89, 355-399. doi: 10.1016/j.matpur.2007.12.005
CrossRef Google Scholar
|
[24]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. Springer-Verlag, Berlin, 1981, 840.
Google Scholar
|
[25]
|
G. Hetzer, W. Shen and A. Zhang, Effects of spatial variations and dispersal strategies on principal eigenvalues of dispersal operators and spreading speeds of monostable equations, Rocky Mountain Journal of Mathematics, 2013, 43(2), 489-513. doi: 10.1216/RMJ-2013-43-2-489
CrossRef Google Scholar
|
[26]
|
W. Hudson and B. Zinner, Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media, Boundary value problems for functional-differential equations, World Sci. Publ., River Edge, NJ, 1995, 187- 199.
Google Scholar
|
[27]
|
V. Hutson, S. Martinez, K. Mischaikow and G.T. Vickers, The evolution of dispersal, J. Math. Biol., 2003, 47, 483-517. doi: 10.1007/s00285-003-0210-1
CrossRef Google Scholar
|
[28]
|
Y. Kametaka, On the nonlinear diffusion equation of Kolmogorov-PetrovskiiPiskunov type, Osaka J. Math, 1976, 13, 11-66.
Google Scholar
|
[29]
|
C. Kao, Y. Lou, and W. Shen, Evolution of Mixed Dispersal in Periodic Environments, Discrete and Continuous Dynamical Systems, 2010, 26, 551-596. doi: 10.3934/dcds.2010.26.551
CrossRef Google Scholar
|
[30]
|
C. Kao, Y. Lou and W. Shen, Random dispersal vs non-Local dispersal, Discrete and Continuous Dynamical Systems, Series B, 2012, 17, 2047-2072.
Google Scholar
|
[31]
|
A. Kolmogorov, I. Petrowsky, and N.Piscunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul. Moskovskogo Gos. Univ, 1937, 1, 1-26.
Google Scholar
|
[32]
|
L. Kong, Existence of Positive Solutions of Fisher-KPP Equations in Locally Spatially Variational Habitat with Hybrid Dispersal, J. Math. Res, 9, 2017, 1, 1-12.
Google Scholar
|
[33]
|
L. Kong and W. Shen, Positive Stationary Solutions and Spreading Speeds of KPP Equations in Locally Spatially Inhomogeneous Media. Methods and Applications of Analysis, 2011, 18, 427-456.
Google Scholar
|
[34]
|
L. Kong and W. Shen, Liouville Type Property and Spreading Speeds of KPP Equations in Periodic Media with Localized Spatial Inhomogeneity, Journal of Dynamics and Differential Equations, 2014, 26(1), 181-215. doi: 10.1007/s10884-014-9351-8
CrossRef Google Scholar
|
[35]
|
C. T. Lee, M. F. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. V. Leaver, K. McCain, J. Umbanhowar and A. Mogilner, Non-local concepts and models in biology, J. theor. Biol., 2001, 210, 201-219. doi: 10.1006/jtbi.2000.2287
CrossRef Google Scholar
|
[36]
|
S. A. Levin, H. C. Muller-Landau, R. Nathan and J. Chave, The ecology and evolution of seed dispersal: a theoretical perspective, Annu. Rev. Eco. Evol. Syst., 2003, 34, 575-604. doi: 10.1146/annurev.ecolsys.34.011802.132428
CrossRef Google Scholar
|
[37]
|
W. Li, Y. Sun, and Z. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 2010, 11, 2302-2313. doi: 10.1016/j.nonrwa.2009.07.005
CrossRef Google Scholar
|
[38]
|
X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 2007, 60, 1-40. doi: 10.1002/cpa.20154
CrossRef Google Scholar
|
[39]
|
X. Liang, Y. Yi, and X. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Diff. Eq., 2006, 231, 57-77. doi: 10.1016/j.jde.2006.04.010
CrossRef Google Scholar
|
[40]
|
J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.
Google Scholar
|
[41]
|
G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 2009, 92(9), 232-262.
Google Scholar
|
[42]
|
P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, 1991.
Google Scholar
|
[43]
|
J. Nolen, M. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic adevction and variational principle for propagation speeds, Dynamics of PDE, 2005, 2, 1-24.
Google Scholar
|
[44]
|
J. Nolen and J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle, Discrete and Continuous Dynamical Systems, 2005, 13, 1217-1234. doi: 10.3934/dcds.2005.13.1217
CrossRef Google Scholar
|
[45]
|
J. Nolen, J. M. Roquejoffre and L. Ryzhik, Power-Like Delay in Time Inhomogeneous Fisher-KPP Equations, Communications in Partial Differential Equations, 2015, 40(3), 475-505. doi: 10.1080/03605302.2014.972744
CrossRef Google Scholar
|
[46]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag New York Berlin Heidelberg Tokyo, 1983.
Google Scholar
|
[47]
|
D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math, 1976, 22, 312-355. doi: 10.1016/0001-8708(76)90098-0
CrossRef Google Scholar
|
[48]
|
W. Shen, Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations, Journal of Dynamics and Differential Equations, 2011, 23, 1-44. doi: 10.1007/s10884-010-9200-3
CrossRef Google Scholar
|
[49]
|
W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, Journal of Differential Equations, 2010, 249, 749-795.
Google Scholar
|
[50]
|
W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats, Proceedings of the American Mathematical Society, 2012, 140, 1681-1696. doi: 10.1090/S0002-9939-2011-11011-6
CrossRef Google Scholar
|
[51]
|
W. Shen and A. Zhang, Traveling wave solutions of spatially periodic nonlocal monostable equations, Communications on Applied Nonlinear Analysis, 2012, 19, 73-101.
Google Scholar
|
[52]
|
N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, 1997.
Google Scholar
|
[53]
|
J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 1951, 38, 196-218. doi: 10.1093/biomet/38.1-2.196
CrossRef Google Scholar
|
[54]
|
K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ, 1978, 18(3), 453-508. doi: 10.1215/kjm/1250522506
CrossRef Google Scholar
|
[55]
|
H. F. Weinberger, Long-time behavior of a class of biology models, SIAM J. Math. Anal, 1982, 13, 353-396. doi: 10.1137/0513028
CrossRef Google Scholar
|
[56]
|
H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol, 2002, 45, 511-548. doi: 10.1007/s00285-002-0169-3
CrossRef Google Scholar
|
[57]
|
A. Zhang, Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations, Discrete Contin. Dyn. Syst. Suppl., 2013, 815-824.
Google Scholar
|
[58]
|
X. Zhao, Global attractivity and stability in some monotone discrete dynamical systems, Bull. Austral. Math. Soc., 1996, 53, 305-324. doi: 10.1017/S0004972700017032
CrossRef Google Scholar
|
[59]
|
X. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics, Springer-Verlag, New York, 2003, 16.
Google Scholar
|