[1]
|
T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fxed point theorems on G-metric spaces, Topology Appl., 2013, 160, 1486–1493. doi: 10.1016/j.topol.2013.05.027
CrossRef Google Scholar
|
[2]
|
M. Asadi, E. Karapınar and P. Salimi, A new approach to G-metric and related fxed point theorems, J. Inequal. Appl., 2013. DOI: 10.1186/1029–242X–2013–454.
CrossRef Google Scholar
|
[3]
|
R. P. Agarwal, E. Karapınar and A. F. R. L. Hierro, Last remarks on G-metric spaces and related fxed point theorems, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 2016, 110, 433–456. doi: 10.1007/s13398-015-0242-6
CrossRef Google Scholar
|
[4]
|
H. Aydi, A. Felhi and S. Sahmim, Related fxed point results for cyclic contractions on G-metric spaces and application, Filomat, 2017, 31(3), 853–869. doi: 10.2298/FIL1703853A
CrossRef Google Scholar
|
[5]
|
H. Aydi, M. Postolache and W. Shatanawi, Coupled fxed point results for (ψ, ϕ)-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., 2012, 63(1), 298–309. doi: 10.1016/j.camwa.2011.11.022
CrossRef Google Scholar
|
[6]
|
M. Abbas, A. Hussain, B. Popovic and S. Radenovic, Istratescu-Suzuki-Cirictype fxed points results in the framework of G-metric spaces, J. Nonlinear Sci. Appl., 2016, 9(12), 6077–6095. doi: 10.22436/jnsa.009.12.15
CrossRef Google Scholar
|
[7]
|
S. Cobzaş, Functional analysis in Asymmetric Normed Spaces, Birkhäuser, Springer, Basel, 2013.
Google Scholar
|
[8]
|
H. Ding and E. Karapınar, A note on some couple fxed-point theorems on G-metric spaces, J. Inequal. Appl., 2012. DOI: 10.1186/1029–242X–2012–170.
CrossRef Google Scholar
|
[9]
|
Y. U. Gaba, Fixed point theorems in G-metric spaces, J. Math. Anal. Appl., 2017, 455, 528–537. doi: 10.1016/j.jmaa.2017.05.062
CrossRef Google Scholar
|
[10]
|
M. Jleli and B. Samet, Rmarks on G-metric spaces and fxed poit theorems, Fixed Point Theory Appl., 2012. DOI: 10.1186/1687–1812–2012–210.
CrossRef Google Scholar
|
[11]
|
E. Karapınar and R. P. Agarwal, Further fxed point results on G-metric spaces, Fixed Point Theory Appl., 2013. DOI: 10.1186/1687–1812–2013–154.
CrossRef Google Scholar
|
[12]
|
A. Latif and T. Nazir, Common fxed point of generalized contraction type mappings in ordered G-metric spaces, J. Nonlinear Convex Anal., 2018, 19(7), 1275–1285.
Google Scholar
|
[13]
|
Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 2006, 7, 289–297.
Google Scholar
|
[14]
|
Z. Mustafa, H. Obiedat and F. Awawdeh, Some fxed point theorem for mapping on complete G-metric sapces, Fixed Point Theory Appl., 2008. DOI: 10.1155/2008/189870.
CrossRef Google Scholar
|
[15]
|
Z. Mustafa, M. Khandagji and W. Shatanawi, Fixed point results on complete G-metric spaces, Stud. Sci. Math. Hung., 2011, 48(3), 304–319.
Google Scholar
|
[16]
|
Z. Mustafa, M. Arshad, S. U. Khan, J. Ahmad and M. M. M. Jaradat, Common fxed points for multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl., 2017, 10, 2550–2564. doi: 10.22436/jnsa.010.05.23
CrossRef Google Scholar
|
[17]
|
Z. Mustafa, H. Aydi and E. Karapınar, On common fxed points in G-metric spaces using (E.A) property, Comput. Math. Appl., 2012, 64(6), 1944–1956. doi: 10.1016/j.camwa.2012.03.051
CrossRef Google Scholar
|
[18]
|
I. L. Reilly, P. V. Subrahmanyam and M. K. Vamanamurthy, Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math., 1982, 93, 127–140. doi: 10.1007/BF01301400
CrossRef Google Scholar
|
[19]
|
A. F. Roldán López de Hierro, E. Karapınar and D. O'Regan, Coincidence point theorems on quasi-metric spaces via simulation functions and applications to G-metric spaces, J. Fixed Point Theory Appl., 2018. DOI: 10.1007/s11784– 018–0582–x.
CrossRef Google Scholar
|
[20]
|
B. Samet, C. Vetro, F. Vetro and S. Nicaise, Rmarks on G-metric spaces, Int. J. Anal., 2013. DOI: 10.1155/2013/917158.
CrossRef Google Scholar
|
[21]
|
W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ-Maps in G-metric Spaces, Fixed Point Theory Appl., 2010. DOI: 10.1155/2010/181650.
CrossRef Google Scholar
|
[22]
|
W. A. Wilson, On quasi-metric spaces, Am. J. Math., 1931, 53, 675–684. doi: 10.2307/2371174
CrossRef Google Scholar
|
[23]
|
L. Zhu, C. Zhu and C. Chen, Commen fxed point theorems for fuzzy mappings in G-metric spaces, Fixed Point Theory Appl., 2012. DOI: 10.1186/1687–1812– 2012–159.
CrossRef Google Scholar
|
[24]
|
A. Zada, R. Shah and T. Li, Integral type contraction and coupled coincidence fxed point theorems for two pairs in G-metric spaces, Hacet. J. Math. Stat., 2016, 45(5), 1475–1484.
Google Scholar
|
[25]
|
D. Zheng, Fixed point theorems for generalized θ - ϕ-contractions in G-metric spaces, J. Funct. Spaces, 2018. DOI: 10.1155/2018/1418725.
CrossRef Google Scholar
|