2021 Volume 11 Issue 1
Article Contents

Musawenkhosi Patson Mkhatshwa, Sandile Sydney Motsa, Mekonnen Shiferaw Ayano, Precious Sibanda. OVERLAPPING MULTI-DOMAIN SPECTRAL METHOD FOR NON-DARCIAN MIXED CONVECTION CHEMICALLY REACTING FLOW OF MICROPOLAR FLUID OVER A FLAT PLATE IN A POROUS MEDIA[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 113-137. doi: 10.11948/20190200
Citation: Musawenkhosi Patson Mkhatshwa, Sandile Sydney Motsa, Mekonnen Shiferaw Ayano, Precious Sibanda. OVERLAPPING MULTI-DOMAIN SPECTRAL METHOD FOR NON-DARCIAN MIXED CONVECTION CHEMICALLY REACTING FLOW OF MICROPOLAR FLUID OVER A FLAT PLATE IN A POROUS MEDIA[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 113-137. doi: 10.11948/20190200

OVERLAPPING MULTI-DOMAIN SPECTRAL METHOD FOR NON-DARCIAN MIXED CONVECTION CHEMICALLY REACTING FLOW OF MICROPOLAR FLUID OVER A FLAT PLATE IN A POROUS MEDIA

  • An efficient overlapping multi-domain spectral method is presented and used in the analysis of a two-dimensional steady laminar MHD mixed convection flow, heat and mass transfer over a vertical flat plate embedded in a porous medium. The effect of chemical reaction, thermal radiation, heat source/sink and other parameters influencing the flow has been analyzed by imposing magnetic force transverse to the plate in a non-Darcy porous medium with constant wall temperature and concentration conditions. The flow equations are expressed in dimensionless form and solved using overlapping multidomain bivariate spectral local linearization method (OMD-BSLLM). An analysis of the convergence and accuracy of the OMD-BSLLM is given using error norms and residual errors. Comparisons with previously published work for special cases of the problem are performed and excellent concurrence is found; hence reliable results are being presented. The influence of certain parameters on the fluid properties and flow characteristics is analyzed. The skin friction, heat and mass transfer coefficients are presented for the concentrated flow and the turbulent boundary layer flow. The flow characteristics are found to be smaller for turbulent boundary layer flows than concentrated particle flows. This type of flow has an application in catalytic and chromatographic reactions, packed absorption and distillation towers.
    MSC: 76A05, 76R99, 76M22, 76M60
  • 加载中
  • [1] M. S. Ayano, Mixed convection flow of micropolar fluid over a vertical plate subject to Hall and Ion-slip currents, Int. J. Eng. Appl. Sci., 2013, 5(3), 38–52.

    Google Scholar

    [2] M. S. Ayano and J. S. Mathunjwa, Chemical reaction and radiation effects on unsteady MHD micropolar flow over a vertical plate with variable temperature, Front. Heat Mass Transf., 2016, 7(9).

    Google Scholar

    [3] E. M. Aboeldahab and E. M. E. Elbarbary, Hall current effect on magnetohydrodynamic free-convection flow past a semi-infinite vertical plate with mass transfer, Int. J. Engng. Sci., 2001, 39(14), 1641–1652. doi: 10.1016/S0020-7225(01)00020-9

    CrossRef Google Scholar

    [4] F. Ahmad, Effects of heat source/sink on MHD flow of micropolar fluids over a shrinking sheet with mass suction, J. Basic. Appl. Sci. Res., 2014, 4(3), 2017– 215.

    Google Scholar

    [5] T. Ariman, M. A. Turk and N. D. Sylvester, Micro-continuum fluid mechanics A review, Int. J. Engng. Sci., 1973, 11(8), 905. doi: 10.1016/0020-7225(73)90038-4

    CrossRef Google Scholar

    [6] T. Ariman, M. A. Turk and N. D. Sylvester, Applications of micro-continuum fluid mechanics, Int. J. Eng. Sci., 1974, 12(4), 273. doi: 10.1016/0020-7225(74)90059-7

    CrossRef Google Scholar

    [7] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.

    Google Scholar

    [8] C. H. Chien and K. Chao, Non-Darcian mixed convection along a vertical plate embedded in a porous medium, Appl. Math. Model., 1990, 14, 482–488. doi: 10.1016/0307-904X(90)90173-3

    CrossRef Google Scholar

    [9] A. J. Chamkha, S. M. M. El-Kabeir and A. M. Rashid, Coupled heat and mass transfer by MHD natural convection of micropolar fluid about a truncated cone in the presence of radiation and chemical reaction, J. Nav. Archit. Mar. Eng., 2013, 10(2), 157–168. doi: 10.3329/jname.v10i2.15898

    CrossRef Google Scholar

    [10] A. J. Chamkha, Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects, Numer. Heat Tr. A-Appl., 2001, 39(5), 511–530 doi: 10.1080/10407780120202

    CrossRef Google Scholar

    [11] A. J. Chamkha, S. M. M. EL-Kabeir and A. M. Rashad, Heat and mass transfer by non-Darcian free convection from a vertical cylinder embedded in porous media with a temperature-dependent viscosity, Int. J. Numer. Meth. Heat Fluid Flow, 2011, 21, 847–863. doi: 10.1108/09615531111162828

    CrossRef Google Scholar

    [12] A. J. Chamkha, S. M. M. EL-Kabeir and A. M. Rashad, Unsteady coupled heat and mass transfer by mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface in the presence of radiation and chemical reaction, Prog. Comput. Fluid Dy., 2015, 15(3), 186–196. doi: 10.1504/PCFD.2015.069576

    CrossRef Google Scholar

    [13] A. C. Eringen, Simple microfluids, Int. J. Engng. Sci., 1964, 2, 205. doi: 10.1016/0020-7225(64)90005-9

    CrossRef Google Scholar

    [14] A. C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York, 1999.

    Google Scholar

    [15] A. C. Eringen, Microcontinuum Field Theories-Ⅱ: Fluent Media, Springer, New York, 2001.

    Google Scholar

    [16] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 1966, 16.

    Google Scholar

    [17] E. M. A. Elbashbeshy, T. G. Emam and E. A. Sayed, Effect of thermal radiation on free convection flow and heat transfer over a truncated cone in presence of pressure work and heat source/sink, Therm. Sci., 2016, 20(2), 555–565. doi: 10.2298/TSCI130409006E

    CrossRef Google Scholar

    [18] M. A. Hossain and K. Mohammad, Effect of Hall current on hydromagnetic free convection flow near an accelerated porous plate, Jpn. J. Appl. Phys., 1988, 27, 1531–1535. doi: 10.1143/JJAP.27.1531

    CrossRef Google Scholar

    [19] M. A. Hossain and R. I. M. A. Rashid, Hall effect on hydromagnetic free convection flow along a porous at plate with mass transfer. J. Phys. Soc. Japan, 1987, 56, 97–104. doi: 10.1143/JPSJ.56.97

    CrossRef Google Scholar

    [20] M. A. Hossain and H. S. Takhar, Radiation effect on mixed convection along a vertical plate with uniform surface temperature, Heat Mass Transf., 1996, 31, 243–248. doi: 10.1007/BF02328616

    CrossRef Google Scholar

    [21] M. Kinyanjui, J. K. Kwanza and S. M. Uppal, Magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past an impulsively started infinite vertical porous plate with Hall current and radiation absorption, Energy Convers. Manag., 2001, 42, 917–931. doi: 10.1016/S0196-8904(00)00115-1

    CrossRef Google Scholar

    [22] G. Lukaszewicz, Micropolar fluids-Theory and Applications, Birkhauser, Basel, 1999.

    Google Scholar

    [23] M. Modather, A. M. Rashad and A. J. Chamkha, An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium, Turkish J. Eng. Env. Sei., 2009, 33, 245–257.

    Google Scholar

    [24] S. R. Mishra, J. Mohanty and J. Das, Free convective flow, heat and mass transfer in a micropolar fluid over a shrinking sheet in the presence of a heat source, J. Eng. Phys. Thermophys., 2018, 91(4), 1043–1049.

    Google Scholar

    [25] V. M. Magagula, On the multi-domain bivariate spectral local linearisation method for solving systems of nonsimilar boundary layer partial differential equations, Int. J. Math. Math. Sci., 2019(2019), 1–18.

    Google Scholar

    [26] R. Muthucumaraswamy and G. S. Kumar, Heat and mass transfer effects on moving vertical plate in the presence of thermal radiation, Theoret. Appl. Mech., 2004, 31, 35–46. doi: 10.2298/TAM0401035M

    CrossRef Google Scholar

    [27] I. Pop, The effect of Hall current on hydromagnetic flow near accelerated plate, J. Math. Phys. Sci., 1971, 5, 375–379.

    Google Scholar

    [28] P. Ranganathan and R. Viskanta, Mixed convection boundary layer flow along a vertical porous medium, Numer. Heat Transf., 1984, 7, 305–317.

    Google Scholar

    [29] A. Raptis and P. C. Ram, Effects of Hall current and rotation, Astrophys. Space Sci., 1984, 106(2), 257–264. doi: 10.1007/BF00650353

    CrossRef Google Scholar

    [30] A. M. Rashad, Ali J. Chamkha and S. M. M. EL-Kabeir, Effects of radiation and chemical reaction on heat and mass transfer by natural convection in a micropolar fluid-saturated porous medium with streamwise temperature and species concentration variations, Heat Transf. Res., 2014, 45(8), 795–815. doi: 10.1615/HeatTransRes.2014006568

    CrossRef Google Scholar

    [31] A. M. Rashad, S. Abbasbandy and A. J. Chamkha, Mixed convection flow of a micropolar fluid over a continuously moving vertical surface immersed in a thermally and solutally stratified medium with chemical reaction, J. Taiwan Inst. Chem. Eng., 2014, 45(5), 2163–2169. doi: 10.1016/j.jtice.2014.07.002

    CrossRef Google Scholar

    [32] A. M. Rashad and S. M. M. EL-Kabeir, Heat and mass transfer in transient flow by mixed convection boundary layer over a stretching sheet embedded in a porous medium with chemically reactive species, J. Porous Media, 2010, 13(1), 75–85. doi: 10.1615/JPorMedia.v13.i1.70

    CrossRef Google Scholar

    [33] D. U. Srinivasacharya and U. Mendu, Free convection in MHD micropolar fluid with radiation and chemical reaction effect, Chem. Ind. Chem. Eng. Q., 2014, 20(2), 183–195. doi: 10.2298/CICEQ120516121S

    CrossRef Google Scholar

    [34] L. N. Trefethen, Spectral Methods in Matlab, SIAM Philadelphia, 2000.

    Google Scholar

    [35] K. Vafai and C. L. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transf., 1981, 24, 195–203. doi: 10.1016/0017-9310(81)90027-2

    CrossRef Google Scholar

    [36] K. A. Yih, Effect of radiation on natural convection about a truncated cone, Int. J. Heat Mass Transf., 1999, 42(23), 4299–4305. doi: 10.1016/S0017-9310(99)00092-7

    CrossRef Google Scholar

Figures(15)  /  Tables(4)

Article Metrics

Article views(3114) PDF downloads(361) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint