2021 Volume 11 Issue 1
Article Contents

Manzoor Ahmad, Akbar Zada, Wei Dong, Jiafa Xu. STABILITY ANALYSIS OF A NONLOCAL FRACTIONAL IMPULSIVE COUPLED EVOLUTION DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 138-160. doi: 10.11948/20190201
Citation: Manzoor Ahmad, Akbar Zada, Wei Dong, Jiafa Xu. STABILITY ANALYSIS OF A NONLOCAL FRACTIONAL IMPULSIVE COUPLED EVOLUTION DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 138-160. doi: 10.11948/20190201

STABILITY ANALYSIS OF A NONLOCAL FRACTIONAL IMPULSIVE COUPLED EVOLUTION DIFFERENTIAL EQUATION

  • Author Bio: Email address: manzoor230ahmad@gmail.com(M. Ahmad); Email address: zadababo@yahoo.com(A. Zada); Email address: xujiafa292@sina.com (J. Xu)
  • Corresponding author: Email address: dongweihd@163.com (W.Dong) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China(No. 11371117), the China Postdoctoral Science Foundation (No. 2019M652348), Technology Research Foundation of Chongqing Educational Committee(No. KJQN201900539)
  • This work is committed to establish the necessary assumptions related with the existence and uniqueness of solutions to a nonlocal coupled impulsive fractional differential equation. We attain our main results by the use of Krasnoselskii's fixed point theorem and Banach contraction principle. Additionally, we create a framework for studying the Hyers-Ulam stability of the considered problem. For the applications of theoretical result, we discuss an example at the end.
    MSC: 26A33, 34A08, 34B27
  • 加载中
  • [1] R. P. Agarwal, Y. Zhou and Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 2010, 59, 1095-1100. doi: 10.1016/j.camwa.2009.05.010

    CrossRef Google Scholar

    [2] Z. Ali, A. Zada and K. Shah, On Ulam's Stability for a Coupled Systems of Nonlinear Implict Fractional Differential Equations, Bull. Malays. Math. Sci. Soc., 2019, 42, 2681-2699. doi: 10.1007/s40840-018-0625-x

    CrossRef Google Scholar

    [3] N. Ahmad, Z. Ali, K. Shah, A. Zada and G. Rahman, Analysis of implicit type nonlinear dynamical problem of impulsive fractional differentail equations, Complexity, 2018, Article ID 6423974, 15 pages.

    Google Scholar

    [4] B. Ahmad and S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal., 2009, 3, 251-258.

    Google Scholar

    [5] M. Altman, A fixed point theorem for completely continuous operators in Banach spaces, Bull Acad polon Sci., 1955, 3, 409-413.

    Google Scholar

    [6] Z. Bai and H. Lü, Positive solutions for boundary value problem problems of nonlinear fractional differential equations, J. Math Anal. Appl., 2005, 311, 495-505. doi: 10.1016/j.jmaa.2005.02.052

    CrossRef Google Scholar

    [7] W. Cheng, J. Xu, D. O'Regan and Y. Cui, Positive solutions for a nonlinear discrete fractional boundary value problems with a p-Laplacian operator, Journal of Applied Analysis and Computation, 2019, 9, 1959-1972. doi: 10.11948/20190051

    CrossRef Google Scholar

    [8] W. Cheng, J. Xu, Y. Cui and Q. Ge, Positive solutions for a class of fractional difference systems with coupled boundary conditions, Adv. Differ. Equ., 2019, 249.

    Google Scholar

    [9] Z. Fu, S. Bai, D. O'Regan and J. Xu, Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives, J. Inequal. Appl., 2019, 104.

    Google Scholar

    [10] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 1941, 27, 222-224. doi: 10.1073/pnas.27.4.222

    CrossRef Google Scholar

    [11] C. Jiang, F. Zhang and T. Li, Synchronization and antisynchronization of Ncoupled fractional-order complex chaotic systems with ring connection, Math. Methods Appl. Sci., 2018, 41, 2625-2638. doi: 10.1002/mma.4765

    CrossRef Google Scholar

    [12] C. Jiang, A. Zada, M. T. Şenel, and T. Li, Synchronization of bidirectional N-coupled fractional-order chaotic systems with ring connection based on antisymmetric structure, Adv. Difference Equ., 2019, 456.

    Google Scholar

    [13] S. M. Jung, On the Hyers-Ulam stability of functional equations that have the quadratic property, J. Math. Appl., 1998, 222, 126-137.

    Google Scholar

    [14] S. M. Jung, Hyers-Ulam stability of linear differential equations of first order Ⅱ, Appl. MATH. Lett., 2006, 19, 854-858. doi: 10.1016/j.aml.2005.11.004

    CrossRef Google Scholar

    [15] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006, 204.

    Google Scholar

    [16] X. Liu, M. Jia and W. Ge, Multiple solutions of a p-Laplacian model involving a fractional derivative, Adv. Difference Equ., 2013, 126.

    Google Scholar

    [17] T. Li and A. Zada, Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces, Adv. Difference Equ., 2016, 153.

    Google Scholar

    [18] T. Li, A. Zada, and S. Faisal, Hyers-Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl., 2016, 9, 2070-2075. doi: 10.22436/jnsa.009.05.12

    CrossRef Google Scholar

    [19] R. Magin, Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering, 2004, 32, 1-104. doi: 10.1615/CritRevBiomedEng.v32.10

    CrossRef Google Scholar

    [20] K. B. Oldham, fractional differential equations in electrochemistry, Advances in Engineering software, 2010, 41, 9-12. doi: 10.1016/j.advengsoft.2008.12.012

    CrossRef Google Scholar

    [21] M. Obloza, Hyers stability of the linear differential equation, Rocznik NaukDydakt. Prace Mat., 1993, 13, 259-270.

    Google Scholar

    [22] I. Podlubny, fractional differential equations, Academic Press, San Diego, 1999.

    Google Scholar

    [23] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297-300. doi: 10.1090/S0002-9939-1978-0507327-1

    CrossRef Google Scholar

    [24] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 2010, 26, 103-107.

    Google Scholar

    [25] K. Shah, H. Khalil and R. A. Khan, Upper and lower solutions to a coupled system of nonlinear fractional differential equations, Progress in Fractional Differntial Equations Applications, 2016, 1, 1-10.

    Google Scholar

    [26] K. Shah and R. A. Khan, Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti periodic boundary conditions, Diff. Equ.Appl., 2015, 7, 245-262.

    Google Scholar

    [27] R. Shah and A. Zada, A fixed point approach to the stability of a nonlinear volterra integrodiferential equation with delay, Hacettepe J. Math. Stat., 2018, 47, 615-623.

    Google Scholar

    [28] S. O. Shah, A. Zada and A. E. Hamza, Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales, Qual. Theory Dyn. Syst., 2019, 18, 825-840. doi: 10.1007/s12346-019-00315-x

    CrossRef Google Scholar

    [29] S. Tang, A. Zada, S. Faisal, M. M. A. El-Sheikh and T. Li, Stability of higherorder nonlinear impulsive differential equations, J. Nonlinear Sci. Appl., 2016, 9, 4713-4721. doi: 10.22436/jnsa.009.06.110

    CrossRef Google Scholar

    [30] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ. New York, 1960.

    Google Scholar

    [31] C. Urs, Coupled fixed point theorem and application to periodic boundary value problem, Miskolic Math Notes., 2013, 14, 323-333. doi: 10.18514/MMN.2013.598

    CrossRef Google Scholar

    [32] G. Wang, B. Ahmad and L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., 2011, 74, 792-804. doi: 10.1016/j.na.2010.09.030

    CrossRef Google Scholar

    [33] P. Wang, C. Li, J. Zhang, and T. Li, Quasilinearization method for first-order impulsive integro-differential equations, Electron. J. Differential Equ., 2019, 46, 1-14.

    Google Scholar

    [34] J. Wang, A. Zada and W. Ali, Ulam's-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces, Int. J. Nonlinear Sci. Num., 2018, 19, 553-560. doi: 10.1515/ijnsns-2017-0245

    CrossRef Google Scholar

    [35] J. Wang, Y. Zhou and W. Wei, Study in fractional differential equations by means of topological degree methods, Numerical Func. Anal. Opti., 2012, 33, 216-238. doi: 10.1080/01630563.2011.631069

    CrossRef Google Scholar

    [36] J. Wang and X. Li, Hyers-Ulam stability of fractional Langevin equations, Appl. Math. Comput., 2015, 258, 72-83.

    Google Scholar

    [37] J. Wang, L. Lv and Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron J. Qual. Theo. Diff. Equns., 2011, 63, 1-10.

    Google Scholar

    [38] B. Xu, J. Brzdek and W. Zhang, Fixed point results and the Hyers-Ulam stability of linear equations of higher orders, Pacific J. Math., 2015, 273, 483-498. doi: 10.2140/pjm.2015.273.483

    CrossRef Google Scholar

    [39] J. Xu, C. S. Goodrich and Y. Cui, Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 2019, 113 (2), 1343-1358. doi: 10.1007/s13398-018-0551-7

    CrossRef Google Scholar

    [40] J. Xu, Z. Wei, D. O'Regan and Y. Cui, Infinitely many solutions for fractional Schrödinger-Maxwell equations, Journal of Applied Analysis and Computation, 2019, 9, 1165-1182. doi: 10.11948/2156-907X.20190022

    CrossRef Google Scholar

    [41] J. Xu, J. Jiang and D. O'Regan, Positive solutions for a class of p-Laplacian Hadamard fractional-order three-point boundary value problems, Mathematics, 2020, 8, 308. doi: 10.3390/math8030308

    CrossRef Google Scholar

    [42] H. Zhang, Y. Li and J. Xu, Positive solutions for a system of fractional integral boundary value problems involving Hadamard-type fractional derivatives, Complexity, 2019, 204.

    Google Scholar

    [43] S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Electron. J. Differential Equ., 2006, 36, 1-12.

    Google Scholar

    [44] L. Zhang, B. Ahmad, G. Wang and R. P. Agarwal, Nonlinear fractional integro differential equations on unbounded domains in a Banach space, J. Comput. Appl. Math., 2013, 249, 51-56. doi: 10.1016/j.cam.2013.02.010

    CrossRef Google Scholar

    [45] A. Zada, M. Yar and T. Li, Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions, Ann. Univ. Paedagog. Crac. Stud. Math., 2018, 17, 103- 125.

    Google Scholar

    [46] A. Zada, P. Wang, D. Lassoued, and T. Li, Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems, Adv. Difference Equ., 2017, 192.

    Google Scholar

    [47] A. Zada and S. Ali, Stability Analysis of Multi-point Boundary Value Problem for Sequential Fractional Differential Equations with Non-instantaneous Impulses, Int. J. Nonlinear Sci. Numer. Simul., 2018, 19, 763-774. doi: 10.1515/ijnsns-2018-0040

    CrossRef Google Scholar

    [48] A. Zada, S. Ali and Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Difference Equ., 2017, 317.

    Google Scholar

    [49] A. Zada, W. Ali and S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Meth. App. Sci., 2017, 40, 5502-5514. doi: 10.1002/mma.4405

    CrossRef Google Scholar

    [50] A. Zada and S. O. Shah, Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses, Hacettepe J. Math. Stat., 2018, 47, 1196-1205.

    Google Scholar

    [51] A. Zada, O. Shah and R. Shah, Hyers Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 2015, 271, 512-518.

    Google Scholar

    [52] A. Zada, S. Shaleena and T. Li, Stability analysis of higher order nonlinear differential equations in β-normed spaces, Math. Meth. App. Sci., 2019, 42, 1151-1166. doi: 10.1002/mma.5419

    CrossRef Google Scholar

Article Metrics

Article views(3132) PDF downloads(412) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint