2020 Volume 10 Issue 1
Article Contents

Lufang Mi, Wenyan Cui, Honglian You. PERIODIC AND QUASI-PERIODIC SOLUTIONS FOR THE COMPLEX SWIFT-HOHENBERG EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 297-313. doi: 10.11948/20190152
Citation: Lufang Mi, Wenyan Cui, Honglian You. PERIODIC AND QUASI-PERIODIC SOLUTIONS FOR THE COMPLEX SWIFT-HOHENBERG EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 297-313. doi: 10.11948/20190152

PERIODIC AND QUASI-PERIODIC SOLUTIONS FOR THE COMPLEX SWIFT-HOHENBERG EQUATION

  • Corresponding author: Email address: yufengxingshi@163.com(W. Cui) 
  • Fund Project: The authors were supported by NNSFC(11601036, 11401041), NSFSP(ZR2019MA062), Science and Technology Foundation of Shandong Province(J16LI52) and Binzhou University (BZXYL1704)
  • In this paper, we consider the complex Swift-Hohenberg(CSH) equation $ \frac{\partial u}{\partial t} = \lambda u-(\alpha+\mathrm{i}\beta)\left(1+\frac{\partial^2}{\partial x^2}\right)^2u-(\sigma+\mathrm{i}\rho)|u|^2u $ subject to periodic boundary conditions. Using an infinite dimensional KAM theorem, we prove that there exist a continuous branch of periodic solutions and a Cantorian branch of quasi-periodic solutions for the above equation.
    MSC: 37K55, 35Q53
  • 加载中
  • [1] A. Ankiewicz, K. I. Maruno and N. Akhmediev, Periodic and optical soliton solutions of the quintic complex Swift-Hohenberg equation, Physics Letters A, 2003, 308(5), 397-404.

    Google Scholar

    [2] V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, Uspehi Mat. Nauk, 1963, 18(5 (113)), 13-40.

    Google Scholar

    [3] D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations, Ⅱ, Comm. Math. Phys., 2017, 353(1), 353-378.

    Google Scholar

    [4] D. Bambusi and A. Fusè, Nekhoroshev theorem for perturbations of the central motion, Regul. Chaotic Dyn., 2017, 22(1), 18-26.

    Google Scholar

    [5] D. Bambusi, B. Grébert, A. Maspero and D. Robert, Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation, Anal. PDE, 2018, 11(3), 775-799. doi: 10.2140/apde.2018.11.775

    CrossRef Google Scholar

    [6] A. Barsella, C. Lepers, M. Taki and P. Glorieux, Swift-hohenberg model of a laser with saturable absorber, Journal of Optics B Quantum & Semiclassical Optics, 1999, 1(1), 64.

    Google Scholar

    [7] M. E. Bleich, D. Hochheiser, J. V. Moloney and J. E. S. Socolar, Controlling extended systems with spatially filtered, time-delayed feedback, Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1997, 55(3), 2119-2126.

    Google Scholar

    [8] J. Bourgain, Recent progress on quasi-periodic lattice schrödinger operators and hamiltonian pdes, Russian Mathematical Surveys, 2004, 59(2), 37-52.

    Google Scholar

    [9] J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 2005, 229(1), 62-94.

    Google Scholar

    [10] K. W. Chung and X. Yuan, Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation, Nonlinearity, 2008, 21(3), 435-451. doi: 10.1088/0951-7715/21/3/004

    CrossRef Google Scholar

    [11] H. Cong, J. Liu, Y. Shi and X. Yuan, The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differential Equations, 2018, 264(7), 4504-4563. doi: 10.1016/j.jde.2017.12.013

    CrossRef Google Scholar

    [12] H. Cong, J. Liu and X. Yuan, Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation, J. Math. Phys., 2009, 50(6), 063516, 18.

    Google Scholar

    [13] H. Cong, J. Liu and X. Yuan, Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity |u|2pu, Discrete Contin. Dyn. Syst. Ser. S, 2010, 3(4), 579-600. doi: 10.3934/dcdss.2010.3.579

    CrossRef Google Scholar

    [14] H. Cong, J. Liu and X. Yuan, Stability of KAM tori for nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 2016, 239(1134), vii+85.

    Google Scholar

    [15] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Review of Modern Physics, 1993, 65(65), 851-1112.

    Google Scholar

    [16] W. Cui, L. Mi and H. You, Invariant tori for the forth order nonlinear schrodinger equation with unbounded perturbation, Journal of Liaocheng University (Natural Science Edition), 2019, 32(1), 12-20.

    Google Scholar

    [17] J. Geng, Invariant tori of full dimension for a nonlinear Schrödinger equation, J. Differential Equations, 2012, 252(1), 1-34.

    Google Scholar

    [18] B. Grébert and V. Vilaça Da Rocha, Stable and unstable time quasi periodic solutions for a system of coupled NLS equations, Nonlinearity, 2018, 31(10), 4776-4811. doi: 10.1088/1361-6544/aad3d9

    CrossRef Google Scholar

    [19] M. Hoyuelos, Numerical study of the vector complex Swift-Hohenberg equation, Physica D Nonlinear Phenomena, 2006, 223(2), 174-179. doi: 10.1016/j.physd.2006.09.002

    CrossRef Google Scholar

    [20] A. N. Kolmogorov, On conservation of conditionally periodic motions for a small change in hamilton"s function, Dokl.akad.nauk Sssr, 1954, 98, 527-530.

    Google Scholar

    [21] S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Functional Analysis and Its Applications, 1987, 21(3), 192-205. doi: 10.1007/BF02577134

    CrossRef Google Scholar

    [22] S. B. Kuksin, Perturbation theory for quasiperiodic solutions of infinite-dimensional Hamiltonian systems, and its application to the Korteweg-de Vries equation, Sbornik: Mathematics, 1989, 64(2), 397-413. doi: 10.1070/SM1989v064n02ABEH003316

    CrossRef Google Scholar

    [23] S. B. Kuksin, Fifteen years of kam for pde, Translations of the American Mathematical Society-Series 2, 2004, 212, 237-258.

    Google Scholar

    [24] J. Lega, J. V. Moloney and A. C. Newell, Universal description of laser dynamics near threshold, Physica D Nonlinear Phenomena, 1995, 83(4), 478-498. doi: 10.1016/0167-2789(95)00046-7

    CrossRef Google Scholar

    [25] G. Lendert and K. Edgar, Traveling waves and defects in the complex swift-hohenberg equation, Phys Rev E Stat Nonlin Soft Matter Phys, 2011, 84(2), 056203.

    Google Scholar

    [26] J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Communications in mathematical physics, 2011, 307(3), 629-673. doi: 10.1007/s00220-011-1353-3

    CrossRef Google Scholar

    [27] X. Liu and R. Liu, Singular solutions of the (2+1)-dimensional euler equation, Journal of Liaocheng University (Natural Science Edition), 2018, 31(1), 1-5+28.

    Google Scholar

    [28] K. I. Maruno, A. Ankiewicz and N. Akhmediev, Exact soliton solutions of the one-dimensional complex swiftchohenberg equation, Physica D Nonlinear Phenomena, 2003, 176(1), 44-66.

    Google Scholar

    [29] J. F. Mercier and J. V. Moloney, Derivation of semiconductor laser mean-field and swift-hohenberg equations, Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 66(3 Pt 2A), 036221.

    Google Scholar

    [30] L. Mi, S. Lu and H. Cong, Existence of 3-dimensional tori for 1D complex Ginzburg-Landau equation via a degenerate KAM theorem, J. Dynam. Differential Equations, 2014, 26(1), 21-56. doi: 10.1007/s10884-013-9341-2

    CrossRef Google Scholar

    [31] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1962, 1962, 1-20.

    Google Scholar

    [32] M. Santagiustina, E. Hernandezgarcia, M. Sanmiguel et al., Polarization patterns and vectorial defects in type-ⅱ optical parametric oscillators., Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 65(3 Pt 2B), 036610.

    Google Scholar

    [33] Y. Shi, On the existence of Sobolev quasi-periodic solutions of multidimensional nonlinear beam equation, J. Math. Phys., 2016, 57(10), 102701, 12. doi: 10.1063/1.4964258

    CrossRef Google Scholar

    [34] Y. Shi, Analytic solutions of nonlinear elliptic equations on rectangular tori, J. Differential Equations, 2019, 267(9), 5576-5600. doi: 10.1016/j.jde.2019.05.039

    CrossRef Google Scholar

    [35] K. Staliunas, G. Slekys and C. O. Weiss, Nonlinear pattern formation in active optical systems: Shocks, domains of tilted waves, and cross-roll patterns, Physical Review Letters, 1997, 79(14), 2658-2661. doi: 10.1103/PhysRevLett.79.2658

    CrossRef Google Scholar

    [36] J. B. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Physical Review A, 1977, 15(1), 319-328. doi: 10.1103/PhysRevA.15.319

    CrossRef Google Scholar

    [37] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 1990, 127(3), 479-528.

    Google Scholar

    [38] H. You, Global attractors for non-densely defined evolution equations, Journal of Liaocheng University (Natural Science Edition), 2019, 32(1), 21-29.

    Google Scholar

    [39] X. Yuan and J. Zhang, Long time stability of Hamiltonian partial differential equations, SIAM J. Math. Anal., 2014, 46(5), 3176-3222. doi: 10.1137/120900976

    CrossRef Google Scholar

    [40] C. Yue, Hamiltonian structure and Algebro-geometricsolutions of the nonlinear Schrödinger-MKdV equations, Journal of Liaocheng University (Natural Science Edition), 2019, 32(1), 30-37.

    Google Scholar

Article Metrics

Article views(37770) PDF downloads(608) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint