2020 Volume 10 Issue 1
Article Contents

Asma Issasfa, Ji Lin. LUMP AND MIXED ROGUE-SOLITON SOLUTIONS TO THE 2+1 DIMENSIONAL ABLOWITZ-KAUP-NEWELL-SEGUR EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 314-325. doi: 10.11948/20190160
Citation: Asma Issasfa, Ji Lin. LUMP AND MIXED ROGUE-SOLITON SOLUTIONS TO THE 2+1 DIMENSIONAL ABLOWITZ-KAUP-NEWELL-SEGUR EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 314-325. doi: 10.11948/20190160

LUMP AND MIXED ROGUE-SOLITON SOLUTIONS TO THE 2+1 DIMENSIONAL ABLOWITZ-KAUP-NEWELL-SEGUR EQUATION

  • Corresponding authors: Email address: 1355420248@qq.com(A. Issasfa);  Email address: linji@zjnu.edu.cn(J. Lin)
  • Fund Project: The work was supported by the National Natural Science Foundation of China(Nos. 11835011 and 11675146)
  • In this paper, the 2+1 dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation which obtained from the potential Boiti-Leon-Manna-Pempi nelli (pBLMP) equation, is introduced. Through the bilinear method and ansatz technique, the rational solutions consisting of rogue wave and lump soliton solutions are constructed, where we discuss the condition of guaranteeing the positiveness and analyticity of the lump solutions. The collection of a quadratic function with an exponential function describing rationalexponential solutions is proved, the interaction consisting of one lump and one soliton with fission and fusion phenomena. The second kind of interaction comprises the line rogue wave and soliton solution, which is inelastic. With the usage of the extended homoclinic test approach, the homoclinic breather-wave solution is derived. The characteristics of these various solutions are exhibited and illustrated graphically.
    MSC: 35A25, 35C07
  • 加载中
  • [1] J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse scattering transform-fourier analysis for nonlinear problems, Studies in Applied Mathematics, 1974, 53, 249–315. doi: 10.1002/sapm1974534249

    CrossRef Google Scholar

    [2] S. Batwa, W.X. Ma, Lump solutions to a (2+1)-dimensional fifth-order KdV-like equation, Advances in Mathematical Physics, 2018, 1–6.

    Google Scholar

    [3] Y. Chen, D.J. Zhang and J.B. Bo, New double wronskian solutions of the AKNS equation, Science in China Series A: Mathematics, 2008, 51, 55–69. doi: 10.1007/s11425-007-0165-6

    CrossRef Google Scholar

    [4] Y. Cui, Z.Q. Lao, Multiple rogue wave and breather solutions for the(3+1)-dimensional KPI equation, Comput. Math. Appl, 1971, 76(5), 1099–1107.

    Google Scholar

    [5] C. Freeman, J.J.C. Nimmo, Soliton solutions of the KdV and KP equations: the wronskian technique, Phys. Lett. A, 1983, 95, 1–3. doi: 10.1016/0375-9601(83)90764-8

    CrossRef Google Scholar

    [6] S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Method for solving the Korteweg de Vries equation, Phys. Rev. Lett, 1967, 19, 1095–1097. doi: 10.1103/PhysRevLett.19.1095

    CrossRef Google Scholar

    [7] R. Gilsona, J.J.C. Nimmo, Lump solutions of the BKP equation, Phys. Lett. A., 1990, 147, 472–476. doi: 10.1016/0375-9601(90)90609-R

    CrossRef Google Scholar

    [8] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett, 1971, 27, 1192. doi: 10.1103/PhysRevLett.27.1192

    CrossRef Google Scholar

    [9] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, UK, 2004.

    Google Scholar

    [10] B. Hu, H.Y. Wang, Construction of dKP and BKP equations with self-consistent sources, Inverse Problems, 2006, 22, 1903–1920. doi: 10.1088/0266-5611/22/5/022

    CrossRef Google Scholar

    [11] L. Ji, Z.N. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform, J. Math. Anal. Appl, 2017, 453, 973–984. doi: 10.1016/j.jmaa.2017.04.042

    CrossRef Google Scholar

    [12] J. Kaup, The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys., 1981, 22, 1176. doi: 10.1063/1.525042

    CrossRef Google Scholar

    [13] Z. Qiao, Darboux transformation and explicit solutions for two integrable equations, J. Math. Anal. Appl, 2011, 380, 794–806. doi: 10.1016/j.jmaa.2011.01.078

    CrossRef Google Scholar

    [14] Y. Lou, X.R. Hu and Y. Chen, Nonlocal symmetries related to Bäcklund transformation and their applications, J. Phys. A: Math. Theor., 2012, 45, 155209. doi: 10.1088/1751-8113/45/15/155209

    CrossRef Google Scholar

    [15] J. Lin, X.W. Jin, X.L. Gao and S.Y. Lou, Commun.Theor.Phys., 2018, 70, 119. doi: 10.1088/0253-6102/70/2/119

    CrossRef Google Scholar

    [16] J.q. Lv, S.d. Bilige, Lump solutions of a (2+1)-dimensional bSK equation, Nonlinear. Dyn., 2017, 90, 2119–2124.

    Google Scholar

    [17] Y. Lou, X.B. Hu, Infinitely many lax pair and symmetry constraints of the KP equation, J. Math. Phys., 1997, 38, 6407–6427.

    Google Scholar

    [18] Y. Lou, C.L. Chen and X.Y. Tang, (2+1)-dimensional (M+N)-component AKNS system: painlevé integrability, infinitely many symmetries, similarity reductions and exact solutions, J. Math. Phys., 2002, 43, 4078–4109. doi: 10.1063/1.1490407

    CrossRef Google Scholar

    [19] B. Matveev, M.A. Salle, Darboux transformations and solitons, Springer-Verlag, Berlin, 1991.

    Google Scholar

    [20] X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A., 2015, 379, 1975. doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [21] C. Ma, A.P. Deng, Lump solution of (2+1)-dimensional Boussinesq equation, Commun. Theor. Phys., 2016, 65, 546–552. doi: 10.1088/0253-6102/65/5/546

    CrossRef Google Scholar

    [22] C. Nimmo, N.C. Freeman, A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian, Phys. Lett. A, 1983, 95, 4–6. doi: 10.1016/0375-9601(83)90765-X

    CrossRef Google Scholar

    [23] Y. Ohta, J.K. Yang, Rogue waves in the Davey-Stewartson I equation, Phys. Rev. E., 2012, 86, 036604. doi: 10.1103/PhysRevE.86.036604

    CrossRef Google Scholar

    [24] O. Roshid, W.X. Ma, Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model, Phys. Lett. A., 2018, 382, 3262–3268. doi: 10.1016/j.physleta.2018.09.019

    CrossRef Google Scholar

    [25] B. Ren, X.j. Xu and J. Lin, Symmetry group and exact solutions for the 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation, J. Math. Phys., 2009, 50, 123505. doi: 10.1063/1.3268588

    CrossRef Google Scholar

    [26] J. Satsuma, Hirota bilinear method for nonlinear evolution equations, Lect. Notes Phys, 2003, 632, 171–222.

    Google Scholar

    [27] J. Satsuma, M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 1979, 20, 1496–1503. doi: 10.1063/1.524208

    CrossRef Google Scholar

    [28] Y. Sun, New exact solutions of the (2+1)-dimensional AKNS equation, J. Appl. Math. Phys, 2015, 3, 1391–1405. doi: 10.4236/jamp.2015.311167

    CrossRef Google Scholar

    [29] M. Wazwaz, Multiple-soliton solutions for the Boussinesq equation, Appl. Math., 2007, 192, 479–486.

    Google Scholar

    [30] Y. Yang, W.X. Ma, Lump solutions to the BKP equation by symbolic computation, Int. J. M. Phys. B., 2016, 30, 28–29.

    Google Scholar

    [31] Q. Zhao, W.X. Ma, Mixed lump-kink solutions to the KP equation, Comput. Math. Appl, . 2017, 74, 1399.

    Google Scholar

    [32] B. Zhang, W.X. Ma, Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 2017, 74, 591. doi: 10.1016/j.camwa.2017.05.010

    CrossRef Google Scholar

Figures(10)

Article Metrics

Article views(2897) PDF downloads(592) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint