[1]
|
J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, The inverse scattering transform-fourier analysis for nonlinear problems, Studies in Applied Mathematics, 1974, 53, 249–315. doi: 10.1002/sapm1974534249
CrossRef Google Scholar
|
[2]
|
S. Batwa, W.X. Ma, Lump solutions to a (2+1)-dimensional fifth-order KdV-like equation, Advances in Mathematical Physics, 2018, 1–6.
Google Scholar
|
[3]
|
Y. Chen, D.J. Zhang and J.B. Bo, New double wronskian solutions of the AKNS equation, Science in China Series A: Mathematics, 2008, 51, 55–69. doi: 10.1007/s11425-007-0165-6
CrossRef Google Scholar
|
[4]
|
Y. Cui, Z.Q. Lao, Multiple rogue wave and breather solutions for the(3+1)-dimensional KPI equation, Comput. Math. Appl, 1971, 76(5), 1099–1107.
Google Scholar
|
[5]
|
C. Freeman, J.J.C. Nimmo, Soliton solutions of the KdV and KP equations: the wronskian technique, Phys. Lett. A, 1983, 95, 1–3. doi: 10.1016/0375-9601(83)90764-8
CrossRef Google Scholar
|
[6]
|
S. Gardner, J.M. Greene, M.D. Kruskal and R.M. Miura, Method for solving the Korteweg de Vries equation, Phys. Rev. Lett, 1967, 19, 1095–1097. doi: 10.1103/PhysRevLett.19.1095
CrossRef Google Scholar
|
[7]
|
R. Gilsona, J.J.C. Nimmo, Lump solutions of the BKP equation, Phys. Lett. A., 1990, 147, 472–476. doi: 10.1016/0375-9601(90)90609-R
CrossRef Google Scholar
|
[8]
|
R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett, 1971, 27, 1192. doi: 10.1103/PhysRevLett.27.1192
CrossRef Google Scholar
|
[9]
|
R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, UK, 2004.
Google Scholar
|
[10]
|
B. Hu, H.Y. Wang, Construction of dKP and BKP equations with self-consistent sources, Inverse Problems, 2006, 22, 1903–1920. doi: 10.1088/0266-5611/22/5/022
CrossRef Google Scholar
|
[11]
|
L. Ji, Z.N. Zhu, Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform, J. Math. Anal. Appl, 2017, 453, 973–984. doi: 10.1016/j.jmaa.2017.04.042
CrossRef Google Scholar
|
[12]
|
J. Kaup, The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys., 1981, 22, 1176. doi: 10.1063/1.525042
CrossRef Google Scholar
|
[13]
|
Z. Qiao, Darboux transformation and explicit solutions for two integrable equations, J. Math. Anal. Appl, 2011, 380, 794–806. doi: 10.1016/j.jmaa.2011.01.078
CrossRef Google Scholar
|
[14]
|
Y. Lou, X.R. Hu and Y. Chen, Nonlocal symmetries related to Bäcklund transformation and their applications, J. Phys. A: Math. Theor., 2012, 45, 155209. doi: 10.1088/1751-8113/45/15/155209
CrossRef Google Scholar
|
[15]
|
J. Lin, X.W. Jin, X.L. Gao and S.Y. Lou, Commun.Theor.Phys., 2018, 70, 119. doi: 10.1088/0253-6102/70/2/119
CrossRef Google Scholar
|
[16]
|
J.q. Lv, S.d. Bilige, Lump solutions of a (2+1)-dimensional bSK equation, Nonlinear. Dyn., 2017, 90, 2119–2124.
Google Scholar
|
[17]
|
Y. Lou, X.B. Hu, Infinitely many lax pair and symmetry constraints of the KP equation, J. Math. Phys., 1997, 38, 6407–6427.
Google Scholar
|
[18]
|
Y. Lou, C.L. Chen and X.Y. Tang, (2+1)-dimensional (M+N)-component AKNS system: painlevé integrability, infinitely many symmetries, similarity reductions and exact solutions, J. Math. Phys., 2002, 43, 4078–4109. doi: 10.1063/1.1490407
CrossRef Google Scholar
|
[19]
|
B. Matveev, M.A. Salle, Darboux transformations and solitons, Springer-Verlag, Berlin, 1991.
Google Scholar
|
[20]
|
X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A., 2015, 379, 1975. doi: 10.1016/j.physleta.2015.06.061
CrossRef Google Scholar
|
[21]
|
C. Ma, A.P. Deng, Lump solution of (2+1)-dimensional Boussinesq equation, Commun. Theor. Phys., 2016, 65, 546–552. doi: 10.1088/0253-6102/65/5/546
CrossRef Google Scholar
|
[22]
|
C. Nimmo, N.C. Freeman, A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian, Phys. Lett. A, 1983, 95, 4–6. doi: 10.1016/0375-9601(83)90765-X
CrossRef Google Scholar
|
[23]
|
Y. Ohta, J.K. Yang, Rogue waves in the Davey-Stewartson I equation, Phys. Rev. E., 2012, 86, 036604. doi: 10.1103/PhysRevE.86.036604
CrossRef Google Scholar
|
[24]
|
O. Roshid, W.X. Ma, Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model, Phys. Lett. A., 2018, 382, 3262–3268. doi: 10.1016/j.physleta.2018.09.019
CrossRef Google Scholar
|
[25]
|
B. Ren, X.j. Xu and J. Lin, Symmetry group and exact solutions for the 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation, J. Math. Phys., 2009, 50, 123505. doi: 10.1063/1.3268588
CrossRef Google Scholar
|
[26]
|
J. Satsuma, Hirota bilinear method for nonlinear evolution equations, Lect. Notes Phys, 2003, 632, 171–222.
Google Scholar
|
[27]
|
J. Satsuma, M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 1979, 20, 1496–1503. doi: 10.1063/1.524208
CrossRef Google Scholar
|
[28]
|
Y. Sun, New exact solutions of the (2+1)-dimensional AKNS equation, J. Appl. Math. Phys, 2015, 3, 1391–1405. doi: 10.4236/jamp.2015.311167
CrossRef Google Scholar
|
[29]
|
M. Wazwaz, Multiple-soliton solutions for the Boussinesq equation, Appl. Math., 2007, 192, 479–486.
Google Scholar
|
[30]
|
Y. Yang, W.X. Ma, Lump solutions to the BKP equation by symbolic computation, Int. J. M. Phys. B., 2016, 30, 28–29.
Google Scholar
|
[31]
|
Q. Zhao, W.X. Ma, Mixed lump-kink solutions to the KP equation, Comput. Math. Appl, . 2017, 74, 1399.
Google Scholar
|
[32]
|
B. Zhang, W.X. Ma, Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 2017, 74, 591. doi: 10.1016/j.camwa.2017.05.010
CrossRef Google Scholar
|