2020 Volume 10 Issue 1
Article Contents

Longfei Gu, Yuanyuan Liu. THE APPROXIMATE SOLUTION OF RIEMANN TYPE PROBLEMS FOR DIRAC EQUATIONS BY NEWTON EMBEDDING METHOD[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 326-334. doi: 10.11948/20190168
Citation: Longfei Gu, Yuanyuan Liu. THE APPROXIMATE SOLUTION OF RIEMANN TYPE PROBLEMS FOR DIRAC EQUATIONS BY NEWTON EMBEDDING METHOD[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 326-334. doi: 10.11948/20190168

THE APPROXIMATE SOLUTION OF RIEMANN TYPE PROBLEMS FOR DIRAC EQUATIONS BY NEWTON EMBEDDING METHOD

  • We study an existence and uniqueness for the nonlinear Riemann type problem and also give an error estimation for the approximate solutions in the Newton embedding procedure in higher dimensional spaces. Clifford analysis plays a key role in our approach.
    MSC: 30G35, 34B15, 11F85, 32A5
  • 加载中
  • [1] R. Abreu Blaya, J. Bory Reyes and D. Peña-Peña, Jump problem and removable singularities for monogenic functions, J. Geom. Anal, 2007, 17, 1–13.

    Google Scholar

    [2] R. Abreu Blaya, J. Bory Reyes, F. Brackx, H. De Schepper and F. Sommen, Boundary value problems associated to a Hermitian Helmholtz equation, J. Math. Anal. Appl, 2012, 389, 1268–1279. doi: 10.1016/j.jmaa.2012.01.006

    CrossRef Google Scholar

    [3] S. Bernstein, On the left linear Riemann problem in Clifford analysis, Bull. Belg. Math. Soc. Simon Stevin, 1996, 3, 557–576.

    Google Scholar

    [4] F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol.76, Pitman Books Ltd, London, 1982.

    Google Scholar

    [5] R. Delanghe, On the regular analytic functions with values in a Clifford algebra, Math. Ann. 1970, 185, 91–111. doi: 10.1007/BF01359699

    CrossRef Google Scholar

    [6] R. Delanghe, On the singularities of functions with values in a Clifford algebra, Math. Ann. 1972, 196, 293–319. doi: 10.1007/BF01428219

    CrossRef Google Scholar

    [7] R. Delanghe, F. Sommen and Souček, Clifford algebras and spinor-valued functions, Kluwer Academic Pulishers, 1992.

    Google Scholar

    [8] P. Gilbert and L. Buchanan, First-order elliptic systems: A function-theoretic approach. Academic Press, New York, 1983.

    Google Scholar

    [9] Y. Gong and J. Du, A kind of Riemann and Hilbert boundary value problem for left monogenic functions in $\mathbb{R}^{m} (m\geq2)$, Complex Var. Elliptic Equ, 2004, 49, 303–318.

    Google Scholar

    [10] K. Gürlebeck and W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester, 1997.

    Google Scholar

    [11] K. Gürlebeck, K. Habetha and W. Sprössig, Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser, Basel, 2016.

    Google Scholar

    [12] K. Gürlebeck and Z. Zhang, Some Riemann boundary value problems in Clifford analysis, Math. Meth. Appl. Sci, 2010, 33, 287–302.

    Google Scholar

    [13] L. Gu and Z. Zhang, Riemann boundary value problem for harmonic functions in Clifford analysis, Math. Nachr, 2014, 287, 1001–1012. doi: 10.1002/mana.201100302

    CrossRef Google Scholar

    [14] Z. Xu, On linear and nonlinear Riemann-Hilbert problems for regular functions with values in Clifford algebras, Chin. Ann. Math. Ser. B, 1990, 11, 349–358.

    Google Scholar

    [15] Z. Zhang, Some properties of operators in Clifford analysis, Complex Var. Elliptic Equ, 2007, 52, 455–473. doi: 10.1080/17476930701200666

    CrossRef Google Scholar

Article Metrics

Article views(1779) PDF downloads(474) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint