[1]
|
R. Abreu Blaya, J. Bory Reyes and D. Peña-Peña, Jump problem and removable singularities for monogenic functions, J. Geom. Anal, 2007, 17, 1–13.
Google Scholar
|
[2]
|
R. Abreu Blaya, J. Bory Reyes, F. Brackx, H. De Schepper and F. Sommen, Boundary value problems associated to a Hermitian Helmholtz equation, J. Math. Anal. Appl, 2012, 389, 1268–1279. doi: 10.1016/j.jmaa.2012.01.006
CrossRef Google Scholar
|
[3]
|
S. Bernstein, On the left linear Riemann problem in Clifford analysis, Bull. Belg. Math. Soc. Simon Stevin, 1996, 3, 557–576.
Google Scholar
|
[4]
|
F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol.76, Pitman Books Ltd, London, 1982.
Google Scholar
|
[5]
|
R. Delanghe, On the regular analytic functions with values in a Clifford algebra, Math. Ann. 1970, 185, 91–111. doi: 10.1007/BF01359699
CrossRef Google Scholar
|
[6]
|
R. Delanghe, On the singularities of functions with values in a Clifford algebra, Math. Ann. 1972, 196, 293–319. doi: 10.1007/BF01428219
CrossRef Google Scholar
|
[7]
|
R. Delanghe, F. Sommen and Souček, Clifford algebras and spinor-valued functions, Kluwer Academic Pulishers, 1992.
Google Scholar
|
[8]
|
P. Gilbert and L. Buchanan, First-order elliptic systems: A function-theoretic approach. Academic Press, New York, 1983.
Google Scholar
|
[9]
|
Y. Gong and J. Du, A kind of Riemann and Hilbert boundary value problem for left monogenic functions in $\mathbb{R}^{m} (m\geq2)$, Complex Var. Elliptic Equ, 2004, 49, 303–318.
Google Scholar
|
[10]
|
K. Gürlebeck and W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester, 1997.
Google Scholar
|
[11]
|
K. Gürlebeck, K. Habetha and W. Sprössig, Application of Holomorphic Functions in Two and Higher Dimensions, Birkhäuser, Basel, 2016.
Google Scholar
|
[12]
|
K. Gürlebeck and Z. Zhang, Some Riemann boundary value problems in Clifford analysis, Math. Meth. Appl. Sci, 2010, 33, 287–302.
Google Scholar
|
[13]
|
L. Gu and Z. Zhang, Riemann boundary value problem for harmonic functions in Clifford analysis, Math. Nachr, 2014, 287, 1001–1012. doi: 10.1002/mana.201100302
CrossRef Google Scholar
|
[14]
|
Z. Xu, On linear and nonlinear Riemann-Hilbert problems for regular functions with values in Clifford algebras, Chin. Ann. Math. Ser. B, 1990, 11, 349–358.
Google Scholar
|
[15]
|
Z. Zhang, Some properties of operators in Clifford analysis, Complex Var. Elliptic Equ, 2007, 52, 455–473. doi: 10.1080/17476930701200666
CrossRef Google Scholar
|