[1]
|
M. A. Alghamdi, N. Shahzad and O. Valero, Fixed point theorems in generalized metric spaces with applications to computer science, Fixed Point Theory and Applications, 2013, 118, 1-20.
Google Scholar
|
[2]
|
M. A. Alghamdi, N. Shahzad and O. Valero, Projective contractions, generalized metrics, and fixed points, Fixed Point Theory and Applications, 2015, 181, 1-13.
Google Scholar
|
[3]
|
J. Borsik and J. Dobo$\check{s}$, On a product of metric spaces, Mathemaica Slovaca, 1981, 31, 193-205.
Google Scholar
|
[4]
|
M. J. Campión, R.G. Catalán, E. Induráin, I. Lizasoain, A. R. Pujol and O.Valero, Geometrical aggregation of finite fuzzy sets, International Journal of Approximate Reasoning, 2018, 103, 248-266. doi: 10.1016/j.ijar.2018.10.005
CrossRef Google Scholar
|
[5]
|
P. Dhawan and J. Kaur, Fixed Points of Expansive Mappings in Quasi Partial Metric Spaces, International Journal of Advanced Research in Science and Engineering, 2016, 5, 145-151.
Google Scholar
|
[6]
|
V. Gupta, R. Deep and A. K. Tripathi, Existence of coincidence point for weakly increasing mappings satisfies $\left(\psi, \phi\right)$-weakly contractive condition in partially ordered metric spaces, International Journal of Computing Science and Mathematics, 2016, 7(6), 495-508.
$\left(\psi, \phi\right)$-weakly contractive condition in partially ordered metric spaces" target="_blank">Google Scholar
|
[7]
|
R. Heckmann, Approximation of metric spaces by partial metric spaces, Applied Categorical Structures, 1999, 7, 71-83. doi: 10.1023/A:1008684018933
CrossRef Google Scholar
|
[8]
|
E. Karapinar, Fixed point theorems on quasi-partial metric spaces, Mathematical and Computer Modelling, 2013, 57, 2442-2448. doi: 10.1016/j.mcm.2012.06.036
CrossRef Google Scholar
|
[9]
|
W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Cham: Springer, 2014.
Google Scholar
|
[10]
|
J. Martin, G. Mayor and O. Valero, Aggregation of asymmetric distances in Computer Science, Information Sciences, 2010, 180, 803-812. doi: 10.1016/j.ins.2009.06.020
CrossRef Google Scholar
|
[11]
|
S. Massanet and O. Valero, New results on metric aggregation, Proceedings of the 17th Spanish Conference on Fuzzy Technology and Fuzzy Logic(Estylf2012), 2012, 558-563.
Google Scholar
|
[12]
|
S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences, 1994, 728, 183-197. doi: 10.1111/j.1749-6632.1994.tb44144.x
CrossRef Google Scholar
|
[13]
|
S. G. Matthews, An extension treatment of lazy data flow deadlock, Theoretical Computer Science, 1995, 151, 195-205. doi: 10.1016/0304-3975(95)00051-W
CrossRef Google Scholar
|
[14]
|
G. Mayor and O. Valero, Metric aggregation functions revisited, European Journal of Combinatorics, 2019, 80, 390-400. doi: 10.1016/j.ejc.2018.02.037
CrossRef Google Scholar
|
[15]
|
J. J. Minana, An overview on transformations on generalized metrics, Workshop on Applied Topological Structures, Valencia, 2017, 95-102.
Google Scholar
|
[16]
|
S. Romaguera, P. Tirado and O. Valero, Complete partial metric spaces have partially metrizable computational models, Internation Journal of Computer Mathematics, 2012, 89, 284-290. doi: 10.1080/00207160.2011.559229
CrossRef Google Scholar
|
[17]
|
S. Romaguera and O. Valero, A quantitative computational model for complete partial metric spaces via formal balls, Mathematical Structures in Computer Science, 2009, 19, 541-563. doi: 10.1017/S0960129509007671
CrossRef Google Scholar
|
[18]
|
W. Shatanawi and K. Abodayeh, Common Fixed Point under Nonlinear Contractions on Quasi Metric Spaces, Mathematics, 2019, 7, 453. doi: 10.3390/math7050453
CrossRef Google Scholar
|
[19]
|
W. Shatanawi, M. Salmi, M. D. Noorani, H. Alsamir and A. Bataihah, Fixed and common fixed point theorems in partially ordered quasi-metric spaces, Journal of Mathematics and Computer Science, 2016, 16, 516-528. doi: 10.22436/jmcs.016.04.05
CrossRef Google Scholar
|
[20]
|
S. Wang, B. Li, Z. Gao and K. Iseki, Some fixed point theorems on expansion mappings, Mathematica Japonica, 1984, 29, 631-636.
Google Scholar
|