Citation: | Jian-Guo Liu, Wen-Hui Zhu, Li Zhou. INTERACTION SOLUTIONS AND ABUNDANT EXACT SOLUTIONS FOR THE NEW (3+1)-DIMENSIONAL GENERALIZED KADOMTSEV-PETVIASHVILI EQUATION IN FLUID MECHANICS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 960-971. doi: 10.11948/20190172 |
[1] | F. Baronio, A. Degasperis, M. Conforti et al., Solutions of the vector nonlinear Schröinger equations: evidence for deterministic rogue waves, Phys. Rev. Lett., 2012, 109, 044102. doi: 10.1103/PhysRevLett.109.044102 |
[2] | S. Chen and W. Ma, Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation, Front. Math. China., 2018, 13(3), 525-534. doi: 10.1007/s11464-018-0694-z |
[3] |
C. Dai, Y. Wang and J. Zhang, Analytical spatiotemporal localizations for the generalized $(3+1)$-dimensional nonlinear Schrödinger equation, Opt. Lett., 2010, 35, 1437-1439. doi: 10.1364/OL.35.001437
CrossRef $(3+1)$-dimensional nonlinear Schrödinger equation" target="_blank">Google Scholar |
[4] |
C. Dai, X. Zhang, Y. Fan et al., Localized modes of the $(n+1)$-dimensional schrödinger equation with power-law nonlinearities in PT-symmetric potentials, Commun. Nonlinear. Sci., 2017, 43, 239-250. doi: 10.1016/j.cnsns.2016.07.002
CrossRef $(n+1)$-dimensional schrödinger equation with power-law nonlinearities in PT-symmetric potentials" target="_blank">Google Scholar |
[5] | B. Ghanbari, A. Bekir and R. K. Saeed, Oblique optical solutions of mitigating internet bottleneck with quadratic-cubic nonlinearity, Int. J. Mod. Phys. B., 2019, 33(20), 1950224. |
[6] | B. Ghanbari and N. Raza, An analytical method for soliton solutions of perturbed Schrödinger's equation with quadratic-cubic nonlinearity, Mod. Phys. Lett. B., 2019, 33(3), 1950018. |
[7] | B. Ghanbari, M. Inc and L. Rada, Solitary wave solutions to the tzitzeica type equations obtained by a new efficient approach, J. Appl. Anal. Comput., 2019, 9(2), 568-589. |
[8] | J. Gao, L. Han and Y. Huang, Solitary Waves for the Generalized Nonautonomous Dual-power Nonlinear Schrödinger Equations with Variable Coefficients, Journal of Nonlinear Modeling and Analysis, 2019, 1, 251-260. |
[9] | B. Ghanbari and M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation, Eur. Phys. J. Plus., 2018, 133, 142. doi: 10.1140/epjp/i2018-11984-1 |
[10] | B. Ghanbari, M. S. Osman and D. Baleanu, Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative, Mod. Phys. Lett. A., 2019, 34(20), 1950155. doi: 10.1142/S0217732319501554 |
[11] | B. Ghanbari and J. F. Gómez-Aguilar, New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio-temporal dispersion involving M-derivative, Mod. Phys. Lett. B., 2019, 33(20), 1950235. doi: 10.1142/S021798491950235X |
[12] | B. Ghanbari, Abundant soliton solutions for the Hirota-Maccari equation via the generalized exponential rational function method, Mod. Phys. Lett. B., 2019, 33(9), 1950106. doi: 10.1142/S0217984919501069 |
[13] | B. Ghanbari and C. Kuo, New exact wave solutions of the variable-coefficient $(1+1)$-dimensional Benjamin-Bona-Mahony and $(2+1)$-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method, Eur. Phys. J. Plus., 2019, 134, 334. |
[14] |
B. Ghanbari, A. Yusuf, M. Inc et al., The new exact solitary wave solutions and stability analysis for the $(2+1)$-dimensional zakharov-kuznetsov equation, Adv. Differ. Equ., 2019, 49, 1-15.
$(2+1)$-dimensional zakharov-kuznetsov equation" target="_blank">Google Scholar |
[15] | B. Ghanbari, M. Inc, A. Yusuf et al., Exact optical solitons of Radhakrishnan-Kundu-Lakshmanan equation with Kerr law nonlinearity, Mod. Phys. Lett. B., 2019, 33(6), 1950061. doi: 10.1142/S0217984919500611 |
[16] |
L. Huang and Y. Chen, Lump solutions and interaction phenomenon for $(2+1)$-dimensional sawada-kotera equation, Commun. Theor. Phys., 2017, 67(5), 473-478. doi: 10.1088/0253-6102/67/5/473
CrossRef $(2+1)$-dimensional sawada-kotera equation" target="_blank">Google Scholar |
[17] | Y. Kong, L. Xin, Q. Qiu et al., Exact periodic wave solutions for the modified Zakharov equations with a quantum correction, Appl. Math. Lett., 2019, 94, 140-148. doi: 10.1016/j.aml.2019.01.009 |
[18] | C. Kuo and B. Ghanbari, Resonant multi-soliton solutions to new $(3+1)$-dimensional Jimbo-Miwa equations by applying the linear superposition principle, Nonlinear Dyn., 2019, 96(1), 459-464. |
[19] |
J. Liu and Y. He, New periodic solitary wave solutions for the $(3+1)$-dimensional generalized shallow water equation, Nonlinear Dyn., 2017, 90(1), 363-369.
$(3+1)$-dimensional generalized shallow water equation" target="_blank">Google Scholar |
[20] |
J. Liu, Y. Tian and Z. Zeng, New exact periodic solitary-wave solutions for the new $(3+1)$-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas, AIP. Adv., 2017, 7, 105013. doi: 10.1063/1.4999913
CrossRef $(3+1)$-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas" target="_blank">Google Scholar |
[21] | J. Li and Y. Zhou, Exact Solutions in Invariant Manifolds of Some Higher-Order Models Describing Nonlinear Waves, Qual. Theor. Dyn. Syst., 2019, 18(1), 183-199. |
[22] | J. Li, G. Chen and S. Deng, Smooth Exact Traveling Wave Solutions Determined by Singular Nonlinear Traveling Wave Systems: Two Models, Int. Bifurcat. Chaos., 2019, 29(4), 1950047. doi: 10.1142/S0218127419500470 |
[23] | J. Li and G. Chen, More on Bifurcations and Dynamics of Traveling Wave Solutions for a Higher-Order Shallow Water Wave Equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2019, 29(1), 1950014. |
[24] | Z. Lan, Periodic, breather and rogue wave solutions for a generalized $(3+1)$-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 2019, 94, 126-132. |
[25] | Z. Lan, W. Hu and B. Guo, General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation, Appl. Math. Model., 2019, 73, 695-714. doi: 10.1016/j.apm.2019.04.013 |
[26] |
Z. Lan, Dark solitonic interactions for the $(3+1)$-dimensional coupled nonlinear Schrödinger equationsin nonlinear optical fibers, Opt. Laser Technol., 2019, 113, 462-466. doi: 10.1016/j.optlastec.2018.12.040
CrossRef $(3+1)$-dimensional coupled nonlinear Schrödinger equationsin nonlinear optical fibers" target="_blank">Google Scholar |
[27] | Z. Lan and J. Su, Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system, Nonlinear Dyn., 2019, 96, 2535-2546. doi: 10.1007/s11071-019-04939-1 |
[28] | Z. Lan and B. Gao, Lax pair, infinitely many conservation laws and solitons for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation with time-dependent coefficients, Appl. Math. Lett., 2018, 79, 6-12. doi: 10.1016/j.aml.2017.11.010 |
[29] | Z. Lan, Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber, Appl. Math. Lett., 2019, 98, 128-134. doi: 10.1016/j.aml.2019.05.028 |
[30] | Z. Lan, Multi-soliton solutions for a $(2+1)$-dimensional variable-coefficient nonlinear Schrödinger equation, Appl. Math. Lett., 2018, 86, 243-248. |
[31] |
Y. Li and J. Liu, Multiple periodic-soliton solutions of the $(3 + 1)$-dimensional generalised shallow water equation, Pramana., 2018, 90, 71. doi: 10.1007/s12043-018-1568-3
CrossRef $(3 + 1)$-dimensional generalised shallow water equation" target="_blank">Google Scholar |
[32] |
Y. Li and J. Liu, New periodic solitary wave solutions for the new $(2+1)$-dimensional Korteweg-de Vries equation, Nonlinear Dyn., 2018, 91(1), 497-504.
$(2+1)$-dimensional Korteweg-de Vries equation" target="_blank">Google Scholar |
[33] | W. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equations., 2018, 264, 2633-2659. doi: 10.1016/j.jde.2017.10.033 |
[34] | W. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, J. Geom. Phys., 2018, 132, 45-54. |
[35] |
W. Ma and A. Abdeljabbar, A bilinear bäcklund transformation of a $(3+1)$-dimensional generalized KP equation, Appl. Math. Lett, 2012, 25(10), 1500-1504. doi: 10.1016/j.aml.2012.01.003
CrossRef $(3+1)$-dimensional generalized KP equation" target="_blank">Google Scholar |
[36] | M. S. Osman, B. Ghanbari and J. A. T. Machado, New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity, Eur. Phys. J. Plus., 2019, 134, 20. doi: 10.1140/epjp/i2019-12442-4 |
[37] | H. M. Srivastava, H. Günerhan and B. Ghanbari, Exact traveling wave solutions for resonance nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity, Math. Method. Appl. Sci., 2019, https://doi.org/10.1002/mma.5827. |
[38] |
A. M. Wazwaz and S. A. El-Tantawy, A new $(3+1)$-dimensional generalized kadomtsev-petviashvili equation, Nonlinear Dyn., 2016, 84(2), 1107-1112. doi: 10.1007/s11071-015-2555-6
CrossRef $(3+1)$-dimensional generalized kadomtsev-petviashvili equation" target="_blank">Google Scholar |
[39] |
G. Xu and A. M. Wazwaz, Characteristics of integrability, bidirectional solitons and localized solutions for a $(3 + 1)$-dimensional generalized breaking soliton equation, Nonlinear Dyn., 2019, 96, 1989-2000. doi: 10.1007/s11071-019-04899-6
CrossRef $(3 + 1)$-dimensional generalized breaking soliton equation" target="_blank">Google Scholar |