[1]
|
J. Ballani and L. Grasedyck, A Projection method to solve linear systems in tensor format, Numer. Linear. Algebra. Appl., 2013, 20, 27-43. doi: 10.1002/nla.1818
CrossRef Google Scholar
|
[2]
|
F. P. A. Beik, F. S. Movahed and S. Ahmadi-Asl, On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations, Numer. Linear. Algebra. Appl., 2016, 23, 444-466. doi: 10.1002/nla.2033
CrossRef Google Scholar
|
[3]
|
Z. Chen and L. Lu, A projection method and Kronecker product preconditioner for solving Sylvester tensor equations, Sci. China Math., 2012, 55(6), 1281-1292. doi: 10.1007/s11425-012-4363-5
CrossRef Google Scholar
|
[4]
|
Z. Chen and L. Lu, A gradient based iterative solutions for Sylvester tensor equations, Math. Probl. Eng., Volume 2013, Article ID 819479, 7 pages.
Google Scholar
|
[5]
|
F. Ding and T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 2006, 44(6), 2269-2284. doi: 10.1137/S0363012904441350
CrossRef Google Scholar
|
[6]
|
G. H. Golub, S. Nash and C. F. Van Loan, A Hessenberg-Schur method for the problem $AX + XB = C$, IEEE Trans. Automat. Contr., 1979, 24, 909-913. doi: 10.1109/TAC.1979.1102170
CrossRef $AX + XB = C$" target="_blank">Google Scholar
|
[7]
|
L. Grasedyck, Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure, Computing, 2004, 72(3-4), 247-265.
Google Scholar
|
[8]
|
Y. Ke and C. Ma, A preconditioned nested splitting conjugate gradient iterative method for the large sparse generalized Sylvester equation, Comput. Math. Appl., 2014, 68, 1409-1420. doi: 10.1016/j.camwa.2014.09.009
CrossRef Google Scholar
|
[9]
|
Y. Ke and C. Ma, Alternating direction method for generalized Sylvester matrix equation $AXB + CYD=E$, Appl. Math. Comput., 2015, 260, 106-125.
$AXB + CYD=E$" target="_blank">Google Scholar
|
[10]
|
Y. Ke and C. Ma, The unified frame of alternating direction method of multipliers for three classes of matrix equations arising in control theory, Asian J. Control, 2017, 20(3), 1-18.
Google Scholar
|
[11]
|
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 2009, 51(3), 455-500. doi: 10.1137/07070111X
CrossRef Google Scholar
|
[12]
|
T. Kolda, B. Bader et al., MATLAB Tensor Toolbox Version 2.6 (released Feb. 6, 2015). (Available from: http://www.sandia.gov/tgkolda/TensorToolbox).
Google Scholar
|
[13]
|
D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor product structure, SIAM J. Matrix Anal. Appl., 2010, 31, 1688-1714. doi: 10.1137/090756843
CrossRef Google Scholar
|
[14]
|
B. Li, S. Tian, Y. Sun and Z. Hu, Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method, J. Comput. Phys., 2010, 229(4), 1198-1212. doi: 10.1016/j.jcp.2009.10.025
CrossRef Google Scholar
|
[15]
|
L. Liang and B. Zheng, Sensitivity analysis of the Lyapunov tensor equation, Linear Multilinear A., 2018, 1-18.
Google Scholar
|
[16]
|
A. Malek and S. H. M. Masuleh, Mixed collocation-finite difference method for 3D microscopic heat transport problems, J. Comput. Appl. Math., 2008, 217, 137-147. doi: 10.1016/j.cam.2007.06.023
CrossRef Google Scholar
|
[17]
|
A. Malek, Z. K. Bojdi and P. N. N. Golbarg, Solving fully three-dimensional microscale dual phase lag problem using mixed-collocation finite difference discretization, J. Heat Transfer, 2012, 134, 0945041-0945046.
Google Scholar
|
[18]
|
S. H. M. Masuleh and T. N. Phillips, Viscoelastic flow in an undulating tube using spectral methods, Comput. Fluids, 2004, 33, 1075-1095. doi: 10.1016/j.compfluid.2003.09.002
CrossRef Google Scholar
|
[19]
|
A. Wu, L. Lv and M. Hou, Finite iterative algorithms for extended Sylvester-conjugate matrix equations, Math. Comput. Model., 2011, 54, 2363-2384.
Google Scholar
|
[20]
|
X. Zhang, Matrix Analysis and Applications, Tsinghua University Press, Beijing, 2004.
Google Scholar
|
[21]
|
H. Zhang, A finite iterative algorithm for solving the complex generalized coupled Sylvester matrix equations by using the linear operators, J. Franklin Inst., 2017, 354, 1856-1874. doi: 10.1016/j.jfranklin.2016.12.011
CrossRef Google Scholar
|