2021 Volume 11 Issue 1
Article Contents

Jiao-Jiao Dong, Biao Li, Manwai Yuen. GENERAL HIGH-ORDER BREATHER SOLUTIONS, LUMP SOLUTIONS AND MIXED SOLUTIONS IN THE (2+1)-DIMENSIONAL BIDIRECTIONAL SAWADA-KOTERA EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 271-286. doi: 10.11948/20190361
Citation: Jiao-Jiao Dong, Biao Li, Manwai Yuen. GENERAL HIGH-ORDER BREATHER SOLUTIONS, LUMP SOLUTIONS AND MIXED SOLUTIONS IN THE (2+1)-DIMENSIONAL BIDIRECTIONAL SAWADA-KOTERA EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 271-286. doi: 10.11948/20190361

GENERAL HIGH-ORDER BREATHER SOLUTIONS, LUMP SOLUTIONS AND MIXED SOLUTIONS IN THE (2+1)-DIMENSIONAL BIDIRECTIONAL SAWADA-KOTERA EQUATION

  • Corresponding author: Email address:libiao@nbu.edu.cn(B.Li) 
  • Fund Project: J. Dong and B. Li were supported by National Natural Science Foundation of China (Nos. 11775121 and 11435005) and K. C. Wong Magna Fund in Ningbo University. M. Yuen was partially supported by the Research Output Prize of Dean's Research Fund 2018-19 (No. ROP-9) from The Education University of Hong Kong
  • In this paper, we investigate some interesting solution structures of the (2+1)-dimensional bidirectional Sawada-Kotera (bSK) equation. We obtain general high-order breather solutions by utilizing the Hirota's bilinear method united with the perturbation expansion technique. Taking a long-wave limit of the obtained breather solutions and then making particular parameter constraints, smooth rational solutions are generated, which include high-order lumps and mixed solutions consisting of lumps and stripe. In order to easily explore the dynamical behaviors, some plots are presented to analyse these solutions.
    MSC: 35Q53, 37K40
  • 加载中
  • [1] M. J. Ablowitz, M. A. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge university press, 1991.

    Google Scholar

    [2] M. Chen, X. Li, Y. Wang and B. Li, A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced ($3+1$)-dimensional Nonlinear Evolution Equation, Commun. Theor. Phys., 2017, 67, 595. doi: 10.1088/0253-6102/67/6/595

    CrossRef Google Scholar

    [3] J. M. Dye and A. Parker, A bidirectional Kaup-Kupershmidt equation and directionally dependent solitons, J. Math. Phys., 2002, 43(10), 4921-4949. doi: 10.1063/1.1503866

    CrossRef Google Scholar

    [4] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations-Euclidean Lie algebras and reduction of the KP hierarchy, Publ. Res. Inst. Math. Sci., 1982, 18, 1077-1110. doi: 10.2977/prims/1195183297

    CrossRef Google Scholar

    [5] L. Feng and T. Zhang, Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation, Appl. Math. Lett., 2018, 78, 133-140. doi: 10.1016/j.aml.2017.11.011

    CrossRef Google Scholar

    [6] C. Gu, H. Hu and Z. Zhou, Darboux transformation in soliton theory and its geometric applications, Shanghai. Sci. Tech. Publ. Shanghai, 1999, 1, 999.

    Google Scholar

    [7] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, New York(NY), 2004.

    Google Scholar

    [8] M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. Res. Inst. Math. Sci., 1983, 19, 943-1001. doi: 10.2977/prims/1195182017

    CrossRef Google Scholar

    [9] P. G. Kevrekidis and D. J. Frantzeskakis, Solitons in coupled nonlinear models: a survey of recent developments, Rev. Phys., 2016, 1, 140-153. doi: 10.1016/j.revip.2016.07.002

    CrossRef Google Scholar

    [10] Y. Liu, B. Li and H. An, General high-order breathers, lumps in the ($2+1$)-dimensional Boussinesq equation, Nonlinear Dyn., 2018, 92, 2061-2076. doi: 10.1007/s11071-018-4181-6

    CrossRef Google Scholar

    [11] J. Lv and S. D. Bilige, Lump solutions of a ($2+1$)-dimensional bSK equation, Nonlinear Dyn., 2017, 90(3), 2119-2124. doi: 10.1007/s11071-017-3788-3

    CrossRef Google Scholar

    [12] X. Lai and X. Cai, Adomian decomposition method for approximating the solutions of the bidirectional Sawada-Kotera Equation, Z. Naturf., 2010, 65a, 658-664.

    Google Scholar

    [13] V. B. Matveev and M. A. Salle, Darboux transformations and solitons, Springer, Berlin, 1991.

    Google Scholar

    [14] Y. Matsuno, Bilinear Transformation Method, Academic, New York(NY), 1984.

    Google Scholar

    [15] H. Ma and A. Deng, Lump solution of ($2+1$)-dimensional Boussinesq equation, Commun. Theor. Phys., 2016, 65, 546. doi: 10.1088/0253-6102/65/5/546

    CrossRef Google Scholar

    [16] W. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 2015, 379, 1975-1978. doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [17] Y. Ma and X. Geng, Darboux and Bäcklund transformations of the bidirectional Sawada-Kotera equation, Appl. Math. Comput., 2012, 218(12), 6963-6965.

    Google Scholar

    [18] W. Ma, X. Yong and H. Q, Diversity of interaction solutions to the ($2+1$)-dimensional Ito equation, Comput. Math. Appl., 2018, 75, 289-295. doi: 10.1016/j.camwa.2017.09.013

    CrossRef Google Scholar

    [19] W. Peng, S. Tian and T. Zhang, Breather waves, high-order rogue waves and their dynamics in the coupled nonlinear Schrödinger equations with alternate signs of nonlinearities, EPL, 2019. DOI: 10.1209/0295-5075/127/50005.

    CrossRef Google Scholar

    [20] W. Peng and S. Tian, Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation, EPL (Europhysics Letters), 2018. DOI: 10.1209/0295-5075/123/50005.

    CrossRef Google Scholar

    [21] H. Sun and A. Chen, Lump and lump-kink solutions of the ($3+1$)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations, Appl. Math. Lett., 2017, 68, 55-61. doi: 10.1016/j.aml.2016.12.008

    CrossRef Google Scholar

    [22] A. M. Wazwaz, The generalized Kaup-Boussinesq equation: multiple soliton solutions, Waves. Random. Complex. Media., 2015, 25, 473-481. doi: 10.1080/17455030.2015.1016474

    CrossRef Google Scholar

    [23] H. Wang, Lump and interaction solutions to the ($2+1$)-dimensional Burgers equation, Appl. Math. Lett., 2018, 85, 27-34. doi: 10.1016/j.aml.2018.05.010

    CrossRef Google Scholar

    [24] Y. Wang, M. Chen, X. Li and B. Li, Some interaction solutions of a reduced generalised ($3+1$)-dimensional shallow water wave equation for lump solutions and a pair of resonance solitons, Z. Naturf. A, 2017, 72, 419-424. doi: 10.1515/zna-2017-0057

    CrossRef Google Scholar

    [25] X. Yan, S. Tian, M. Dong, and T. Zhang, Rogue Waves and Their Dynamics on Bright-Dark Soliton Background of the Coupled Higher Order Nonlinear Schrödinger Equation, J. Phys. Soc. Japan, 2019. DOI: 10.7566/JPSJ.88.074004.

    CrossRef Google Scholar

    [26] J. Yu and Y. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dyn., 2017, 87, 2755-2763. doi: 10.1007/s11071-016-3225-z

    CrossRef Google Scholar

    [27] J. Yang and W. Ma, Lump solutions to the BKP equation by symbolic computation, Int. J. Mod. Phys. B, 2016, 30, 1640028. doi: 10.1142/S0217979216400282

    CrossRef Google Scholar

    [28] J. Yang, W. Ma and Z. Qin, Lump and lump-soliton solutions to the ($2+1$)-dimensional Ito equation, Anal. Math. Phys., 2018, 8, 427-436. doi: 10.1007/s13324-017-0181-9

    CrossRef Google Scholar

    [29] H. Zhang and W. Ma, Lump solutions to the ($2+1$)-dimensional Sawada-Kotera equation, Nonlinear Dyn., 2017, 87, 2305-2310. doi: 10.1007/s11071-016-3190-6

    CrossRef Google Scholar

    [30] X. Zhang and Y. Chen, Rogue wave and a pair of resonance stripe solitons to a reduced ($3+1$)-dimensional Jimbo-Miwa equation, Commun. Nonlinear. Sci. Numer. Simul., 2017, 52, 24-31. doi: 10.1016/j.cnsns.2017.03.021

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(3145) PDF downloads(507) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint