2021 Volume 11 Issue 1
Article Contents

Jing Hu, Zhijun Liu, Lianwen Wang, Ronghua Tan. A DELAYED DISCRETE MULTI-GROUP NONLINEAR EPIDEMIC MODEL WITH VACCINATION AND LATENCY[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 287-308. doi: 10.11948/20190405
Citation: Jing Hu, Zhijun Liu, Lianwen Wang, Ronghua Tan. A DELAYED DISCRETE MULTI-GROUP NONLINEAR EPIDEMIC MODEL WITH VACCINATION AND LATENCY[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 287-308. doi: 10.11948/20190405

A DELAYED DISCRETE MULTI-GROUP NONLINEAR EPIDEMIC MODEL WITH VACCINATION AND LATENCY

  • Corresponding author: Email address: zjliu@hbmzu.edu.cn (Z. Liu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11871201; 11961023) and Natural Science Foundation of Hubei Province (No. 2019CFB241)
  • A delayed discrete multi-group nonlinear epidemic model with vaccination and latency is derived by the application of a nonstandard finite difference scheme. It is proved that the extinction and persistence of the disease are determined by a threshold parameter in term of the basic reproduction number $ R $. More precisely, when $ R\leq 1 $ the disease goes to extinction with the globally asymptotically stable disease-free equilibrium, while the disease is persistent with the globally asymptotically stable endemic equilibrium when $ R>1 $.
    MSC: 34K20, 34K25, 92D30
  • 加载中
  • [1] C. Bockelman, T. C. Frawley, B. Long and A. Koyfman, Mumps: An emergency medicine-focused update, The Journal of emergency medicine, 2018, 54(2), 207-214. doi: 10.1016/j.jemermed.2017.08.037

    CrossRef Google Scholar

    [2] Q. Cui, X. Yang and Q. Zhang, An NSFD scheme for a class of SIR epidemic models with vaccination and treatment, Journal of Difference Equations and Applications, 2014, 20(3), 416-422. doi: 10.1080/10236198.2013.844802

    CrossRef Google Scholar

    [3] Q. Cui and Q. Zhang, Global stability of a discrete SIR epidemic model with vaccination and treatment, Journal of Difference Equations and Applications, 2015, 21(2), 111-117. doi: 10.1080/10236198.2014.990450

    CrossRef Google Scholar

    [4] V. S. Fields, H. Safi, C. Waters, J. Dillaha, L. Capelle, S. Riklon, J. G. Wheeler and D. T. Haselow, Mumps in a highly vaccinated Marshallese community in Arkansas, USA: an outbreak report, The Lancet Infectious Diseases, 2019, 19(2), 185-192. doi: 10.1016/S1473-3099(18)30607-8

    CrossRef Google Scholar

    [5] H. Guo, M. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Canadian Applied Mathematics Quarterly, 2006, 14(3), 259-284.

    Google Scholar

    [6] Z. Hu, Z. Teng and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Real World Applications, 2012, 13(5), 2017-2033. doi: 10.1016/j.nonrwa.2011.12.024

    CrossRef Google Scholar

    [7] A. Korpusik, A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection, Communications in Nonlinear Science and Numerical Simulation, 2017, 43, 369-384. doi: 10.1016/j.cnsns.2016.07.017

    CrossRef Google Scholar

    [8] J. A. Lewnard and Y. H. Grad, Vaccine waning and mumps re-emergence in the United States, Science translational medicine, 2018, 10(433), 5945. doi: 10.1126/scitranslmed.aao5945

    CrossRef Google Scholar

    [9] Z. Liu, J. Hu and L. Wang, Modelling and analysis of global resurgence of mumps: a multi-group epidemic model with asymptomatic infection, general vaccinated and exposed distributions, Nonlinear Analysis: Real World Applications, 2017, 37, 137-161. doi: 10.1016/j.nonrwa.2017.02.009

    CrossRef Google Scholar

    [10] M. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks, Journal of Differential Equations, 2010, 248(1), 1-20. doi: 10.1016/j.jde.2009.09.003

    CrossRef Google Scholar

    [11] R. E. Mickens, Nonstandard finite difference models of differential equations, World Scientific, Singapore, 1994.

    Google Scholar

    [12] R. E. Mickens, Discretizations of nonlinear differential equations using explicit nonstandard methods, Journal of Computational and Applied Mathematics, 1999, 110(1), 181-185. doi: 10.1016/S0377-0427(99)00233-2

    CrossRef Google Scholar

    [13] R. E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, Singapore, 2000.

    Google Scholar

    [14] R. E. Mickens and I. Ramadhani, Finite-difference schemes having the correct linear stability properties for all finite step-sizes III, Computers and Mathematics with Applications, 1994, 27(4), 77-84. doi: 10.1016/0898-1221(94)90056-6

    CrossRef Google Scholar

    [15] N. Principi and S. Esposito, Mumps outbreaks: A problem in need of solutions, Journal of Infection, 2018, 76(6), 503-506. doi: 10.1016/j.jinf.2018.03.002

    CrossRef Google Scholar

    [16] P. R. S. Rao, K. V. Ratnam and M. S. R. Murthy, Stability preserving non standard finite difference schemes for certain biological models, International Journal of Dynamics and Control, 2018, 6(4), 1496-1504. doi: 10.1007/s40435-018-0410-6

    CrossRef Google Scholar

    [17] A. Suryanto, A dynamically consistent nonstandard numerical scheme for epidemic model with saturated incidence rate, International Journal of Mathematics and Computation, 2011, 13, 112-123.

    Google Scholar

    [18] M. Sekiguchi and E. Ishiwata, Global dynamics of a discretized SIRS epidemic model with time delay, Journal of Mathematical Analysis and Applications, 2010, 371(1), 195-202. doi: 10.1016/j.jmaa.2010.05.007

    CrossRef Google Scholar

    [19] R. P. Sigdel and C. C. McCluskey, Global stability for an SEI model of infectious disease with immigration, Applied Mathematics and Computation, 2014, 243, 684-689. doi: 10.1016/j.amc.2014.06.020

    CrossRef Google Scholar

    [20] D. W. Westphal, A. Eastwood, A. Levy, J. Davies, C. Huppatz, M. Gilles, H. Lyttle, S. A. Williams and G.K. Dowse, A protracted mumps outbreak in Western Australia despite high vaccine coverage: a population-based surveillance study, The Lancet Infectious Diseases, 2019, 19(2), 177-184. doi: 10.1016/S1473-3099(18)30498-5

    CrossRef Google Scholar

    [21] L. J. Willocks, D. Guerendiain, H. I. Austin, K. E. Morrison, R. L. Cameron, K. E. Templeton, V. R. F. De Lima, R. Ewing, W. Donovan and K. G. J. Pollock, An outbreak of mumps with genetic strain variation in a highly vaccinated student population in Scotland, Epidemiology and Infection, 2017, 145(15), 3219-3225. doi: 10.1017/S0950268817002102

    CrossRef Google Scholar

    [22] J. Xu and Y. Geng, A nonstandard finite difference scheme for a multi-group epidemic model with time delay, Advances in Difference Equations, 2017, 2017(1), 358. doi: 10.1186/s13662-017-1415-8

    CrossRef Google Scholar

    [23] J. Xu, Y. Geng and J. Hou, A non-standard finite difference scheme for a delayed and diffusive viral infection model with general nonlinear incidence rate, Computers and Mathematics with Applications, 2017, 74(8), 1782-1798. doi: 10.1016/j.camwa.2017.06.041

    CrossRef Google Scholar

    [24] Y. Yang, J. Zhou, X. Ma and T. Zhang, Nonstandard finite difference scheme for a diffusive within-host virus dynamics model with both virus-to-cell and cell-to-cell transmissions, Computers and Mathematics with Applications, 2016, 72(4), 1013-1020. doi: 10.1016/j.camwa.2016.06.015

    CrossRef Google Scholar

    [25] J. Zhou and Y. Yang, Global dynamics of a discrete viral infection model with time delay, virus-to-cell and cell-to-cell transmissions, Journal of Difference Equations and Applications, 2017, 23(11), 1853-1868. doi: 10.1080/10236198.2017.1371144

    CrossRef Google Scholar

Figures(2)  /  Tables(1)

Article Metrics

Article views(2533) PDF downloads(327) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint