Citation: | Jin-Ji Tu, Li-Hong Xie. COMPLETE INVARIANT FUZZY METRICS ON SEMIGROUPS AND GROUPS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 766-771. doi: 10.11948/20190394 |
In this paper, we study the Raǐkov completion of invariant fuzzy metric groups and complete fuzzy metric semigroups (in the sense of Kramosil and Michael). We establish that: (1) if $ (G, M,\ast) $ is a fuzzy metric group such that $ (M,\ast) $ is invariant, then the Raǐkov completion $ \varrho G $ of $ (G,\tau_{M}) $ is a fuzzy metric group $ (\varrho G, \widetilde{M},\ast) $ such that $ (\widetilde{M},\ast) $ is invariant on $ \varrho G $ and $ \widetilde{M}_{|G\times G\times [0,\infty)} = M $; (2) if $ (G, M, \ast) $ is a fuzzy metric semigroup such that $ (M, \ast) $ is invariant, then a fuzzy metric completion $ (\widetilde{G}, \widetilde{M}, \ast) $ of $ (G, M, \ast) $ is a fuzzy metric semigroup and $ (\widetilde{M}, \ast) $ is invariant.
[1] | C. Alegre and S. Romaguera, The Hahn-Banach extension theorem for fuzzy normed spaces revisited, Abstr. Appl. Anal., Vol. 2014. Hindawi, 2014. |
[2] | C. Alegre and S. Romaguera, On the uniform boundedness theorem in fuzzy quasi-normed spaces, Fuzzy Sets Syst. 2016, 282, 143-153. doi: 10.1016/j.fss.2015.02.009 |
[3] | A.V. Arhangel'shiǐ and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, World Sci., 2008. |
[4] | T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, Ann. Fuzzy Math. Inform., 2013, 6(2), 271-283. |
[5] | V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol., 2004, 5(1), 129-136. doi: 10.4995/agt.2004.2001 |
[6] | V. Gregori, J.A. Mascarell and A. Sapena, On completion of fuzzy quasi-metric spaces, Topol. Appl. 2005, 153 (5-6), 886-899. doi: 10.1016/j.topol.2005.01.018 |
[7] | J. Gutiérrez-García and M.A. de Prada Vicente, Hutton[0, 1]-quasi-uniformities induced by fuzzy (quasi-)metric spaces, Fuzzy Sets Syst. 2006, 157(6), 755-766. doi: 10.1016/j.fss.2005.11.002 |
[8] | J. Gutiérrez-García, S. Romaguera and M. Sanchis, Standard fuzzy uniform structures based on continuous t-norms, Fuzzy Sets Syst., 2012, 195, 75-89. doi: 10.1016/j.fss.2011.10.008 |
[9] | J. H. Kim, G.A. Anastassiou and C. Park, Additive ρ-functional inequalities in fuzzy normed spaces, J. Comput. Anal. Appl. 2016, 21(6), 1115-1126. |
[10] | I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 1975, 11, 326-334. |
[11] | K.Y. Lee, Approximation properties in fuzzy normed spaces, Fuzzy Sets Syst. 2016, 282, 115-130. doi: 10.1016/j.fss.2015.02.003 |
[12] | S. Romaguera and M. Sanchis, On fuzzy metric groups, Fuzzy Sets Syst., 2001, 124, 109-115. doi: 10.1016/S0165-0114(00)00085-3 |
[13] | I. Sánchez and M. Sanchis, Complete invariant fuzzy metrics on groups, Fuzzy Sets Syst. 2018, 41-51. |
[14] | I. Sánchez and M. Sanchis, Fuzzy quasi-pseudometrics on algebraic structures, Fuzzy Sets Syst. 2018, 330, 79-86. doi: 10.1016/j.fss.2017.05.022 |
[15] | B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 1960, 10, 314-334. |