2021 Volume 11 Issue 2
Article Contents

Jin-Ji Tu, Li-Hong Xie. COMPLETE INVARIANT FUZZY METRICS ON SEMIGROUPS AND GROUPS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 766-771. doi: 10.11948/20190394
Citation: Jin-Ji Tu, Li-Hong Xie. COMPLETE INVARIANT FUZZY METRICS ON SEMIGROUPS AND GROUPS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 766-771. doi: 10.11948/20190394

COMPLETE INVARIANT FUZZY METRICS ON SEMIGROUPS AND GROUPS

  • Author Bio: tujinji@163.com(J. Tu)
  • Corresponding author: yunli198282@126.com; xielihong2011@aliyun.com(L. Xie)
  • Fund Project: The author was supported by NSFC (Nos.11601393, 11861018), the Natural Science Foundation of Guangdong Province under Grant (Nos. 2018A030313063 and 2021A1515010381), the Innovation Project of Department of Education of Guangdong Province (No.2018KTSCX231) and the Jiangmen science and technology plan projects (No.2020JC01039)
  • In this paper, we study the Raǐkov completion of invariant fuzzy metric groups and complete fuzzy metric semigroups (in the sense of Kramosil and Michael). We establish that: (1) if $ (G, M,\ast) $ is a fuzzy metric group such that $ (M,\ast) $ is invariant, then the Raǐkov completion $ \varrho G $ of $ (G,\tau_{M}) $ is a fuzzy metric group $ (\varrho G, \widetilde{M},\ast) $ such that $ (\widetilde{M},\ast) $ is invariant on $ \varrho G $ and $ \widetilde{M}_{|G\times G\times [0,\infty)} = M $; (2) if $ (G, M, \ast) $ is a fuzzy metric semigroup such that $ (M, \ast) $ is invariant, then a fuzzy metric completion $ (\widetilde{G}, \widetilde{M}, \ast) $ of $ (G, M, \ast) $ is a fuzzy metric semigroup and $ (\widetilde{M}, \ast) $ is invariant.

    MSC: 22A10, 22A20, 54A40
  • 加载中
  • [1] C. Alegre and S. Romaguera, The Hahn-Banach extension theorem for fuzzy normed spaces revisited, Abstr. Appl. Anal., Vol. 2014. Hindawi, 2014.

    Google Scholar

    [2] C. Alegre and S. Romaguera, On the uniform boundedness theorem in fuzzy quasi-normed spaces, Fuzzy Sets Syst. 2016, 282, 143-153. doi: 10.1016/j.fss.2015.02.009

    CrossRef Google Scholar

    [3] A.V. Arhangel'shiǐ and M. Tkachenko, Topological Groups and Related Structures, Atlantis Press, World Sci., 2008.

    Google Scholar

    [4] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, Ann. Fuzzy Math. Inform., 2013, 6(2), 271-283.

    Google Scholar

    [5] V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces, Appl. Gen. Topol., 2004, 5(1), 129-136. doi: 10.4995/agt.2004.2001

    CrossRef Google Scholar

    [6] V. Gregori, J.A. Mascarell and A. Sapena, On completion of fuzzy quasi-metric spaces, Topol. Appl. 2005, 153 (5-6), 886-899. doi: 10.1016/j.topol.2005.01.018

    CrossRef Google Scholar

    [7] J. Gutiérrez-García and M.A. de Prada Vicente, Hutton[0, 1]-quasi-uniformities induced by fuzzy (quasi-)metric spaces, Fuzzy Sets Syst. 2006, 157(6), 755-766. doi: 10.1016/j.fss.2005.11.002

    CrossRef Google Scholar

    [8] J. Gutiérrez-García, S. Romaguera and M. Sanchis, Standard fuzzy uniform structures based on continuous t-norms, Fuzzy Sets Syst., 2012, 195, 75-89. doi: 10.1016/j.fss.2011.10.008

    CrossRef Google Scholar

    [9] J. H. Kim, G.A. Anastassiou and C. Park, Additive ρ-functional inequalities in fuzzy normed spaces, J. Comput. Anal. Appl. 2016, 21(6), 1115-1126.

    Google Scholar

    [10] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 1975, 11, 326-334.

    Google Scholar

    [11] K.Y. Lee, Approximation properties in fuzzy normed spaces, Fuzzy Sets Syst. 2016, 282, 115-130. doi: 10.1016/j.fss.2015.02.003

    CrossRef Google Scholar

    [12] S. Romaguera and M. Sanchis, On fuzzy metric groups, Fuzzy Sets Syst., 2001, 124, 109-115. doi: 10.1016/S0165-0114(00)00085-3

    CrossRef Google Scholar

    [13] I. Sánchez and M. Sanchis, Complete invariant fuzzy metrics on groups, Fuzzy Sets Syst. 2018, 41-51.

    Google Scholar

    [14] I. Sánchez and M. Sanchis, Fuzzy quasi-pseudometrics on algebraic structures, Fuzzy Sets Syst. 2018, 330, 79-86. doi: 10.1016/j.fss.2017.05.022

    CrossRef Google Scholar

    [15] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 1960, 10, 314-334.

    Google Scholar

Article Metrics

Article views(2517) PDF downloads(344) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint