2021 Volume 11 Issue 2
Article Contents

Junliang Lu, Xiaochun Hong, Qi Zhao. NEW EXACT SOLUTIONS FOR COUPLED SCHRÖDINGER-BOUSSINESQ EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 741-765. doi: 10.11948/20190380
Citation: Junliang Lu, Xiaochun Hong, Qi Zhao. NEW EXACT SOLUTIONS FOR COUPLED SCHRÖDINGER-BOUSSINESQ EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 741-765. doi: 10.11948/20190380

NEW EXACT SOLUTIONS FOR COUPLED SCHRÖDINGER-BOUSSINESQ EQUATIONS

  • Corresponding author: Email address: wmb0@163.com(J. Lu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No.11961075)
  • Due to the importance of the coupled Schrödinger-Boussinesq equations (CSBEs) in applied physics, many mathematicians and physicists are interesting to CSBEs. One of the main tasks of studying CSBEs is to obtain the exact solutions for CSBEs. In this paper, we firstly use the coupled Riccati equations to change the polynomial expansion method. Secondly, CSBEs are changed into coupled ordinary differential equations by the traveling wave solution transformation. Then, we assume that the solutions for the coupled ordinary differential equations satisfy the coupled Riccati equations and substitute the solutions of the coupled Riccati equations into the coupled ordinary differential equations. By calculating the algebra system, we successfully construct more new exact traveling wave solutions for CSBEs with distinct physical structures. The exact solutions with arbitrary parameters are expressed by sech, sech2, tanh, sinh, cosh, et al, functions, respectively. When the parameters are taken as special values, some examples are given to demonstrate the solutions and their physical meaning.

    MSC: 35Q35, 35L05, 35L25, 34G20, 34G25
  • 加载中
  • [1] H. I. Abdel-Gawad and M. Osman, Exact solutions of the korteweg-de vries equation with space and time dependent coefficients by the extended unified method, Indian J Pure Appl Math., 2014, 45, 1-12. DOI: 10.1007/s13226-014-0047-x.

    CrossRef Google Scholar

    [2] N. Alam Khan, N. Alam Khan, S. Ullah and et al, Swirling flow of couple stress fluid due to a rotating disk, Nonlinear Engineering, 2019, 8, 261-269. Https://doi.org/10.1515/nleng-2017-0062. doi: 10.1515/nleng-2017-0062

    CrossRef Google Scholar

    [3] K. Ali, M. Osman and M. Abdel-Aty, New optical solitary wave solutions of fokas-lenells equation in optical fiber via sine-gordon expansion method, Alexandria Eng. J., 2020. Https://doi.org/10.1016/j.aej.2020.01.037. doi: 10.1016/j.aej.2020.01.037

    CrossRef Google Scholar

    [4] K. K. Ali, A. M. Wazwaz and M. Osman, Optical soliton solutions to the generalized nonautonomous nonlinear schrödinger equations in optical fibers via the sine-gordon expansion method, Optik, 2020, 208, 164132. Https://doi.org/10.1016/j.ijleo.2019.164132. doi: 10.1016/j.ijleo.2019.164132

    CrossRef Google Scholar

    [5] A. Bazine, D. Jemmeli, M. Belhaj and C. Dridi, New modeling method for uv sensor photoelectrical parameters extraction, OptikInternational Journal for Light and Electron Optics, 2019, 181, 906-913. Https://doi.org/10.1016/j.ijleo.2018.12.171. doi: 10.1016/j.ijleo.2018.12.171

    CrossRef Google Scholar

    [6] Y. Bogomolov, I. Kolchugina, A. Litvak and et al, Near-sonic langmuir solitons, Lett. A, 1982, 91, 447-450. DOI: 10.1016/0375-9601(82)90746-0.

    CrossRef Google Scholar

    [7] J. Cai, B. Yang and C. Zhang, Efficient mass-and energy-preserving schemes for the coupled nonlinear schrödinger-boussinesq system, Applied Mathematics Letters, 2019, 91, 76-82. DOI: org/10.1016/j.aml.2018.11.024.

    CrossRef Google Scholar

    [8] Y. Ding, M. Osman and A. M. Wazwaz, Abundant complex wave solutions for the nonautonomous fokas-lenells equation in presence of perturbation terms, Optik-International Journal for Light and Electron Optics, 2019, 181, 503-513. Https://doi.org/10.1016/j.ijleo.2018.12.064. doi: 10.1016/j.ijleo.2018.12.064

    CrossRef Google Scholar

    [9] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 2000, 277, 212-218. DOI:org/10.1016/S0375- 9601(00)00725-8.

    CrossRef Google Scholar

    [10] D. Feng, J. Lu, J. Li and T. He, Bifurcation studies on traveling wave solutions for nonlinear intensity klein-gordon equation, Applied Mathematics and Computation, 2007, 189(1), 271-284. DOI: org/10.1016/j.amc.2006.11.106.

    CrossRef Google Scholar

    [11] D. Feng, J. Lu, J. Li and T. He, New explicit and ecact solutions for a system fo variant rlw equations, Applied Mathematics and Computation, 2008, 198(2), 715-720. Https://doi.org/10.1016/j.amc.2007.09.009. doi: 10.1016/j.amc.2007.09.009

    CrossRef Google Scholar

    [12] J. Gao, L. Han and Y. Huang, Solitary waves for the generalized nonautonomous dual-power nonlinear schrodinger equations with variable coefficients, Journal of Nonlinear Modeling and Analysis, 2019, 1(2), 251-260. DOI:10.12150/jnma.2019.251.

    CrossRef Google Scholar

    [13] B. Ghanbari, M. S. Osman and D. Baleanu, New optical solitary wave solutions of fokas-lenells equation in presence of perturbation terms by a novel approach, Optik-International Journal for Light and Electron Optics, 2018, 175, 328-333. Https://doi.org/10.1016/j.ijleo.2018.08.007. doi: 10.1016/j.ijleo.2018.08.007

    CrossRef Google Scholar

    [14] B. Ghanbari, M. S. Osman and D. Baleanu, Generalized exponential rational function method for extended zakharov kuzetsov equation with conformable derivative, Modern Physics Letters A, 2019, 34(20), 1950155(16 pages). Https://doi.org/10.1142/S0217732319501554.

    Google Scholar

    [15] B. Guo and F. Chen, Finite dimensional behavior of global attractors for weakly damped nonlinear schrödinger-boussinesq equations, Physica D, 1996, 93, 101- 118. DOI: org/10.1016/0167-2789(95)00277-4.

    CrossRef Google Scholar

    [16] B. Guo and X. Du, Existence of the periodic solution for the weakly damped schrödinger-boussinesq equation, Journal of Mathematical Analysis and Applications, 2001, 262, 453-472. DOI:10.1006/jmaa.2000.7455.

    CrossRef Google Scholar

    [17] B. Guo and X. Du, Existence of the periodic solution for the weakly damped schrödinger-boussinesq equation, Journal of Mathematical Analysis and Applications, 2001, 262(2), 453-472. DOI:10.1006/jmaa.2000.7455.

    CrossRef Google Scholar

    [18] Y. Gurefe, A. Sonmezoglu and E. Misirli, Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics, RAMANA-journal of physics, 2011, 77(6), 1023-1029. DOI:org/10.1007/s12043-011-0201-5.

    CrossRef Google Scholar

    [19] R. Hirota and J. Satsuma, Soliton solution of a coupled kdv equation, Phys. Lett. A, 1981, 85, 407-408. DOI:org/10.1016/0375-9601(81)90423-0.

    CrossRef Google Scholar

    [20] X. Hu, B. Guo and H. Tam, Homoclinic orbits for the coupled schrödingeboussinesq equation and coupled higgs equation, Journal of the Physical Society of Japan, 2003, 72(1), 189-190. DOI: org/10.1143/JPSJ.72.189.

    CrossRef Google Scholar

    [21] L. Huang, Y. Jiao and D. Liang, Multi-symplectic scheme for the coupled schrödinger-boussinesq equations, 2013, 22(7), 070201.

    Google Scholar

    [22] B. Inan, A. T. OsmanMS and D. Baleanu, Analytical and numer ical solutions of mathematical biology models: The newell-whitehead segel and allen-cahn equations, Math. Meth. Appl. Sci., 2019, 1-13. Https://doi.org/10.1002/mma.6067. doi: 10.1002/mma.6067

    CrossRef Google Scholar

    [23] A. Javid, N. Raza and M. S. Osman, Multi-solitons of thermophoretic mo tion equation depicting the wrinkle propagation in substrate-supported graphene sheets, Commun. Theor. Phys., 2019, 71(4), 362-366. DOI: 10.1088/0253- 6102/71/4/362.

    CrossRef Google Scholar

    [24] J. Li and G. Chen, Bifurcations of traveling wave and breather solutions of a general class of nonlinear wave equations, Int. J. Bifurcation and Chaos, 2005, 15(9), 2913-2926. DOI: 10.1142/S0218127405013770.

    CrossRef Google Scholar

    [25] Y. Li and Q. Chen, Finite dimensional global attractor for dissipative schrödinger-boussinesq equations, Journal of mathematical analysis and ap plications, 1997, 205, 107-132. DOI:org/10.1006/jmaa.1996.5148.

    CrossRef Google Scholar

    [26] F. Liao, L. Zhang and S. Wang, Numerical analysis of cubic orthog onal spline collocation methods for the coupled schrödinger-boussinesq equations, Applied Numerical Mathematics, 2017, 119, 194-212. DOI: org/10.1016/j.apnum.2017.04.007.

    CrossRef Google Scholar

    [27] J. Liu, M. S. Osman, W. Zhu et al., Different complex wave structures described by the hirota equation with variable coefficients in inhomogeneous optical fibers, Applied Physics B, 2019, 125: 175, 1-9. Https://doi.org/10.1007/s00340-019-7287-8.

    Google Scholar

    [28] S. Liu, Z. Fu, S. Liu and et al, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 2001, 289, 69-74. DOI: org/10.1016/S0375-9601(01)00580-1.

    Google Scholar

    [29] D. Lu, M. Osman and M. M. A. e. a. Khater, Analytical and nu merical simulations for the kinetics of phase separation in iron (fe-cr x (x=mo, cu)) based on ternary alloys, Physica A, 2020, 537, 122634. Https://doi.org/10.1016/j.physa.2019.122634. doi: 10.1016/j.physa.2019.122634

    CrossRef Google Scholar

    [30] D. Lu, K. U. Tariq, M. Osman and et al, New analytical wave structures for the (3+1)-dimensional kadomtsev-petviashvili and the generalized boussi nesq models and their applications, Results in Physics, 2019, 14, 102491. Https://doi.org/10.1016/j.rinp.2019.102491. doi: 10.1016/j.rinp.2019.102491

    CrossRef Google Scholar

    [31] J. Lu, New exact solutions for kudryashov-sinelshchikov equation, Advances in difference equations, 2018, 374. DOI:org/10.1186/s13662-018-1769-6.

    CrossRef Google Scholar

    [32] V. G. Makhankov, On stationary solutions of the schrödinger equation with a self-consistent potential satisfying boussinesq's equation, Phys. Lett. A, 1974, 50, 42-44. DOI:org/10.1016/0375-9601(74)90344-2.

    CrossRef Google Scholar

    [33] W. Malfielt and W. Hereman, The tanh method: I. exact solutions of nonlinear evolution and wave equations, Physica Scripta, 1996, 54(6), 563-568. DOI: 10.1088/0031-8949/54/6/003.

    CrossRef Google Scholar

    [34] V. B. Matveev and M. A. Salle, Darboux transformations and solitons, Springer, 1991.

    Google Scholar

    [35] A. A. Mohannad and M. Can, Painlevé annlysis and symmetries of the hirota satsuma equation, Journal of Nonlinear Mathematical Physics, 1996, 3, 152- 155. DOI: 10.2991/jnmp.1996.3.1-2.15.

    CrossRef Google Scholar

    [36] M. Osman, B. Ghanbari and J. Machado, New complex waves in nonlinear optics based on the complex ginzburg-landau equation with kerr law nonlinearity, Eur. Phys. J. Plus, 2019, 134, 20. Https://doi.org/10.1140/epjp/i2019-12442-4. doi: 10.1140/epjp/i2019-12442-4

    CrossRef Google Scholar

    [37] M. Osman, D. Lub, M. Khater and R. Attia, Complex wave structures for abundant solutions related to the complex ginzburg-landau model, Optik, 2019, 192, 162927. Https://doi.org/10.1016/j.ijleo.2019.06.027. doi: 10.1016/j.ijleo.2019.06.027

    CrossRef Google Scholar

    [38] M. Osman, J. Machado and D. Baleanu, On nonautonomous complex wave solutions described by the coupled schrödinger-boussinesq equation with variable-coefficients, Optical and Qquantum Electronics, 2018, 52, 73. DOI: 10.1007/s11082-018-1346-y.

    CrossRef Google Scholar

    [39] M. S. Osman, New analytical study of water waves described by coupled fractional variant boussinesq equation in fluid dynamics, Pramana-J. Phys., 2019, 93, 26. Https://doi.org/10.1007/s12043-019-1785-4. doi: 10.1007/s12043-019-1785-4

    CrossRef Google Scholar

    [40] M. S. Osman, M. Inc, J. Liu and et al, Different wave structures and stability analysis for the generalized (2+1)- dimensional camassa-holm-kadomtsev-petviashvili equation, Physica Scripta, 2019, 1-15. Https://doi.org/10.1088/1402-4896/ab52c1. doi: 10.1088/1402-4896/ab52c1

    CrossRef Google Scholar

    [41] M. S. Osman, K. U. Tariq, A. Bekir and et al, Investigation of soliton solutions with different wave structures to the (2 + 1)-dimensional heisenberg ferromagnetic spin chain equation, Commun. Theor. Phys., 2020, 72, 035002. Https://doi.org/10.1088/1572-9494/ab6181. doi: 10.1088/1572-9494/ab6181

    CrossRef Google Scholar

    [42] M. S. Osman and A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional boiti-leon-manna-pempinelli equation, Math Meth Appl Sci, 2019, 1-7. Https://doi.org/10.1002/mma.5721. doi: 10.1002/mma.5721

    CrossRef Google Scholar

    [43] M. Osmana, D. Lu and M. M. Khater, A study of optical wave propagation in the nonautonomous schrödinger-hirota equation with power-law nonlinearity, Results in Physics, 2019, 13, 102157. Https://doi.org/10.1016/j.rinp.2019.102157.

    Google Scholar

    [44] H. Rezazadeh, M. Osman, M. Eslami and et al, Hyperbolic rational solutions to a variety of conformable fractional boussinesq-like equations, Nonlinear Engineering, 2019, 8, 224-230. Https://doi.org/10.1515/nleng-2018-0033. doi: 10.1515/nleng-2018-0033

    CrossRef Google Scholar

    [45] P. A. Robinson, D. L. Newman and M. V. Goldman, Three-dimensional strong langmuir turbulence and wave collapse, Phys. Rev. Lett., 1988, 61, 702-705. DOI: org/10.1103/PhysRevLett.61.702.

    CrossRef Google Scholar

    [46] W. Rui, Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear pdes, Communications in Nonlinear Science and Numerical Simulation, 2017, 47, 253-266. DOI:org/10.1016/j.cnsns.2016.11.018.

    CrossRef Google Scholar

    [47] S. Saha Ray, New double periodic exact solutions of the coupled schrödinger-boussinesq equations describing physical processes in laser and plasma physics, Chinese Journal of Physics, 2017, 55(5), 2039-2047. DOI: org/10.1016/j.cjph.2017.08.022.

    CrossRef Google Scholar

    [48] A. R. Seadawy, W. Amer and A. Sayed, Stability analysis for traveling wave solutions of the olver and fifth-order kdv equations, Journal of Applied Mathematics, 2014, 839485(2014), 1-11. DOI: org/10.1155/2014/839485.

    CrossRef Google Scholar

    [49] T. H. Stix, Waves in Plasmas, American Institute of Physics, NewYork.

    Google Scholar

    [50] C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Springer, 1999.

    Google Scholar

    [51] M. Wang and X. Li, Applications of f-expansion to periodic wave solutions for a new hamiltonian amplitude equation, Chaos Solitons Fract., 2005, 24, 1257-1268. DOI:org/10.1016/j.chaos.2004.09.044.

    CrossRef Google Scholar

    [52] M. Wang, Y. Zhou and Z. Li, Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A, 1996, 216, 67-75. DOI: org/10.1016/0375-9601(96)00283-6.

    CrossRef Google Scholar

    [53] A. M. Wazwaz, Distinct variants of the kdv equation with compact and noncompact structures, Appl. Math. Comput., 2004, 150, 365-377. DOI: org/10.1016/S0096-3003(03)00238-8.

    CrossRef Google Scholar

    [54] A. M. Wazwaz, Generalized solitonary and periodic solutions for nonlinear partial differential equations by the exp-function method, Nonlinear Dyn., 2008, 52, 1-9. DOI: org/10.1007/s11071-007-9250-1.

    Google Scholar

    [55] A. M. Wazwaz, Partial differential equations and solitary waves theory, Springer, 2009.

    Google Scholar

    [56] J. Weiss, M. Tabor and G. Carnevale, The painlev́ property for partial differential equations, Journal of Mathematical Physics, 1983, 24, 522-526. DOI:org/10.1063/1.525721.

    CrossRef Google Scholar

    [57] N. Yajima and J. Satsuma, Soliton solutions in a diatomic lattice system, Progress of Theoretical Physics Supplements, 1979, 62, 370-378. DOI: org/10.1143/PTP.62.370.

    CrossRef Google Scholar

    [58] Z. Yu, S. Jing, W. Zhang and et al, Simulation of the beam extraction from the triode system in small sealed tagged neutron tube, OptikInternational Journal for Light and Electron Optics, 2019, 181, 914-922. Https://doi.org/10.1016/j.ijleo.2018.12.166. doi: 10.1016/j.ijleo.2018.12.166

    CrossRef Google Scholar

    [59] V. E. Zakharov, Collapse of langmuir waves, Soviet Physics JETP, 1972, 35, 908-914. DOI: jetp.ac.ru/cgi-bin/dn/e-035-05-0908.pdf.

    Google Scholar

    [60] J. Zhang, M. Wang and X. Li, The subsidiary ordinary differential equations and the exact solutions of the higher order dispersive nonlinear schrödinger equation, Phys. Lett. A, 2006, 357, 188-195. DOI: org/10.1016/j.physleta.2006.03.081.

    CrossRef Google Scholar

    [61] S. Zhang and Z. Li, New explicit exact solutions to nonlinearly coupled schrödinger-kdv equations(in chinese), ACTA PHYSICA, 2002, 51(10), 2197-2201.

    Google Scholar

    [62] X. Zhang and Y. Chen, General high-order rogue waves to nonlinear schrödinger-boussinesq equation with the dynamical analysis, Nonlinear Dyn., 2018, 93, 2169-2184. DOI: org/10.1007/s11071-018-4317-8.

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(3063) PDF downloads(670) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint