Citation: | Mohamed Ousbika, Zakaria El Allali, Lingju Kong. ON A DISCRETE ELLIPTIC PROBLEM WITH A WEIGHT[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 728-740. doi: 10.11948/20190352 |
Using the variational approach and the critical point theory, we established several criteria for the existence of at least one nontrivial solution for a discrete elliptic boundary value problem with a weight p (·, ·) and depending on a real parameter λ.
[1] | R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York-Basel, 2000. |
[2] | R. P. Agarwal, D. O'Regan and K. Perera, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Differ. Equ., 2005, 2, 93-99. |
[3] | A. Ambroseti and P. H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 1973, 14, 349-381. doi: 10.1016/0022-1236(73)90051-7 |
[4] | C. Bereanu and J. Mawhin, Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions, Math. Bohem., 2006, 131, 145-160. doi: 10.21136/MB.2006.134087 |
[5] | G. M. Bisci and D. Repovš, Nonlinear algebraic systems with discontinuous terms, J. Math. Anal. Appl., 2013, 398, 846-856. doi: 10.1016/j.jmaa.2012.09.046 |
[6] | G. M. Bisci and D. Repovš, On some variational algebraic problems, Adv. Nonlinear Anal., 2013, 2, 127-146. |
[7] | G. M. Bisci and D. Repovš, Algebraic systems with Lipschitz perturbations, J. Elliptic Parabol. Equ., 2015, 1, 189-199. doi: 10.1007/BF03377375 |
[8] | G. M. Bisci and M. Imbesi, Discrete Elliptic Dirichlet Problems and Nonlinear Algebraic Systems, Mediterr. J. Math., 2014, 13, 263-278. doi: 10.1007/s00009-014-0490-2 |
[9] | M. Galewski and A. Orpel, On the existence of solutions for discrete elliptic boundary value problems, Appl. Anal., 2010, 89, 1879-1891. doi: 10.1080/00036811.2010.499508 |
[10] | C. Gao, G. Dai and R. Ma, Existence of positive solutions to discrete second-order boundary value problems with indefinite weight, Adv. Differ. Equ., 2012, 2012, 10 pp. doi: 10.1186/1687-1847-2012-10 |
[11] | I. Győri, F. Hartung and N. A. Mohamady, Existence and uniqueness of positive solutions of a system of nonlinear algebraic equations, Periodica Mathematica Hungarica, 2017, 75, 114-127. doi: 10.1007/s10998-016-0179-3 |
[12] | J. Henderson and H. B. Thompson, Existence of multiple solutions for second order discrete boundary value problems, Comput. Math. Appl., 2002, 43, 1239-1248. doi: 10.1016/S0898-1221(02)00095-0 |
[13] | S. Heidarkhani and M. Imbesi, Multiple solutions for partial discrete Dirichlet problems depending on a real parameter, J. Differ. Equ. Appl., 2015, 21, 96-110. doi: 10.1080/10236198.2014.988619 |
[14] | W. G. Kelly and A. C. Peterson, Difference equations, an Introduction with Applications, Academic Press, San Diego, 1991. |
[15] | M. Mihăilescu, V. Rădulescu and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl., 2009, 15, 557-567. doi: 10.1080/10236190802214977 |
[16] | B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 2000, 113, 401-410. doi: 10.1016/S0377-0427(99)00269-1 |
[17] | M. Struwe, Variational Methods, Application to Nonlinear PDE and Hamiltonian Systems, Springer-Verlag, 1980. |
[18] | B. Yang and J. Ji, Eigenvalue comparisons for boundary value problems of the discrete elliptic equation, Commun. Appl. Anal., 2008, 12, 189-197. doi: 10.1155/ADE/2006/81025 |
[19] | G. Zhang, Critical Point Theory and its Applications, Shanghai Science and Technology Press, Shanghai, 1986. |
[20] | G. Zhang and L. Bai, Existence of solutions for a nonlinear algebraic system, Discret. J. Dyn. Nat. Soc, 2009, Art. ID 785068, 28 pp. |
[21] | G. Zhang and S. Cheng, Existence of solutions for a nonlinear algebraic system with a parameter, J. Math. Anal. Appl., 2006, 314, 311-319. doi: 10.1016/j.jmaa.2005.03.098 |
[22] | G. Zhang and W. Feng, On the number of positive solutions of a nonlinear algebraic system, Linear Algebr. Appl., 2007, 422, 404-421. doi: 10.1016/j.laa.2006.10.026 |