2021 Volume 11 Issue 2
Article Contents

Mohamed Ousbika, Zakaria El Allali, Lingju Kong. ON A DISCRETE ELLIPTIC PROBLEM WITH A WEIGHT[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 728-740. doi: 10.11948/20190352
Citation: Mohamed Ousbika, Zakaria El Allali, Lingju Kong. ON A DISCRETE ELLIPTIC PROBLEM WITH A WEIGHT[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 728-740. doi: 10.11948/20190352

ON A DISCRETE ELLIPTIC PROBLEM WITH A WEIGHT

  • Using the variational approach and the critical point theory, we established several criteria for the existence of at least one nontrivial solution for a discrete elliptic boundary value problem with a weight p (·, ·) and depending on a real parameter λ.

    MSC: 39A10, 35J15
  • 加载中
  • [1] R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York-Basel, 2000.

    Google Scholar

    [2] R. P. Agarwal, D. O'Regan and K. Perera, Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. Differ. Equ., 2005, 2, 93-99.

    Google Scholar

    [3] A. Ambroseti and P. H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 1973, 14, 349-381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

    [4] C. Bereanu and J. Mawhin, Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions, Math. Bohem., 2006, 131, 145-160. doi: 10.21136/MB.2006.134087

    CrossRef Google Scholar

    [5] G. M. Bisci and D. Repovš, Nonlinear algebraic systems with discontinuous terms, J. Math. Anal. Appl., 2013, 398, 846-856. doi: 10.1016/j.jmaa.2012.09.046

    CrossRef Google Scholar

    [6] G. M. Bisci and D. Repovš, On some variational algebraic problems, Adv. Nonlinear Anal., 2013, 2, 127-146.

    Google Scholar

    [7] G. M. Bisci and D. Repovš, Algebraic systems with Lipschitz perturbations, J. Elliptic Parabol. Equ., 2015, 1, 189-199. doi: 10.1007/BF03377375

    CrossRef Google Scholar

    [8] G. M. Bisci and M. Imbesi, Discrete Elliptic Dirichlet Problems and Nonlinear Algebraic Systems, Mediterr. J. Math., 2014, 13, 263-278. doi: 10.1007/s00009-014-0490-2

    CrossRef Google Scholar

    [9] M. Galewski and A. Orpel, On the existence of solutions for discrete elliptic boundary value problems, Appl. Anal., 2010, 89, 1879-1891. doi: 10.1080/00036811.2010.499508

    CrossRef Google Scholar

    [10] C. Gao, G. Dai and R. Ma, Existence of positive solutions to discrete second-order boundary value problems with indefinite weight, Adv. Differ. Equ., 2012, 2012, 10 pp. doi: 10.1186/1687-1847-2012-10

    CrossRef Google Scholar

    [11] I. Győri, F. Hartung and N. A. Mohamady, Existence and uniqueness of positive solutions of a system of nonlinear algebraic equations, Periodica Mathematica Hungarica, 2017, 75, 114-127. doi: 10.1007/s10998-016-0179-3

    CrossRef Google Scholar

    [12] J. Henderson and H. B. Thompson, Existence of multiple solutions for second order discrete boundary value problems, Comput. Math. Appl., 2002, 43, 1239-1248. doi: 10.1016/S0898-1221(02)00095-0

    CrossRef Google Scholar

    [13] S. Heidarkhani and M. Imbesi, Multiple solutions for partial discrete Dirichlet problems depending on a real parameter, J. Differ. Equ. Appl., 2015, 21, 96-110. doi: 10.1080/10236198.2014.988619

    CrossRef Google Scholar

    [14] W. G. Kelly and A. C. Peterson, Difference equations, an Introduction with Applications, Academic Press, San Diego, 1991.

    Google Scholar

    [15] M. Mihăilescu, V. Rădulescu and S. Tersian, Eigenvalue problems for anisotropic discrete boundary value problems, J. Differ. Equ. Appl., 2009, 15, 557-567. doi: 10.1080/10236190802214977

    CrossRef Google Scholar

    [16] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 2000, 113, 401-410. doi: 10.1016/S0377-0427(99)00269-1

    CrossRef Google Scholar

    [17] M. Struwe, Variational Methods, Application to Nonlinear PDE and Hamiltonian Systems, Springer-Verlag, 1980.

    Google Scholar

    [18] B. Yang and J. Ji, Eigenvalue comparisons for boundary value problems of the discrete elliptic equation, Commun. Appl. Anal., 2008, 12, 189-197. doi: 10.1155/ADE/2006/81025

    CrossRef Google Scholar

    [19] G. Zhang, Critical Point Theory and its Applications, Shanghai Science and Technology Press, Shanghai, 1986.

    Google Scholar

    [20] G. Zhang and L. Bai, Existence of solutions for a nonlinear algebraic system, Discret. J. Dyn. Nat. Soc, 2009, Art. ID 785068, 28 pp.

    Google Scholar

    [21] G. Zhang and S. Cheng, Existence of solutions for a nonlinear algebraic system with a parameter, J. Math. Anal. Appl., 2006, 314, 311-319. doi: 10.1016/j.jmaa.2005.03.098

    CrossRef Google Scholar

    [22] G. Zhang and W. Feng, On the number of positive solutions of a nonlinear algebraic system, Linear Algebr. Appl., 2007, 422, 404-421. doi: 10.1016/j.laa.2006.10.026

    CrossRef Google Scholar

Article Metrics

Article views(2278) PDF downloads(266) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint