2021 Volume 11 Issue 2
Article Contents

Xia Zhang, Khattak Shahzad, Yongqiang Fu. OPTIMAL CONTROL PROBLEMS FOR SPACE-FRACTIONAL WAVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 711-727. doi: 10.11948/20190322
Citation: Xia Zhang, Khattak Shahzad, Yongqiang Fu. OPTIMAL CONTROL PROBLEMS FOR SPACE-FRACTIONAL WAVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 711-727. doi: 10.11948/20190322

OPTIMAL CONTROL PROBLEMS FOR SPACE-FRACTIONAL WAVE EQUATIONS

  • Corresponding author: Email: fuyongqiang@hit.edu.cn(Y. Fu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Grant Nos.11771107, 11671111, 11871177)
  • In this paper, we study an optimal control problem for a spacefractional wave equation.First, we show the existence and uniqueness of weak solution by Galërkin approximate method.Then, we obtain an optimal control for the optimal control problem.

    MSC: 35R11, 49J20
  • 加载中
  • [1] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 2018, 339, 3-29. doi: 10.1016/j.cam.2017.09.039

    CrossRef Google Scholar

    [2] J. Chen, D. Fan and C. Zhang, Space-time estimates on damped fractional wave equation, Abstr. Appl. Anal., 2014, Art. ID 428909, 17pp.

    Google Scholar

    [3] A. Debbouche, J. J. Nieto and D. F. M. Torres, Optimal solutions to relaxation in multiple control problems of Sobolev type with nonlocal nonlinear fractional differential equations, J. Optim. Theory Appl., 2017, 174(1), 7-31. doi: 10.1007/s10957-015-0743-7

    CrossRef Google Scholar

    [4] A. Freed, K. Diethelm and Y. Luchko, Fractional-Order Viscoelasticity (FOV): Constitutive Development Using the Fractional Calculus, NASAs Glenn Research Center, 2002.

    Google Scholar

    [5] Y. Fu, On potential wells and vacuum isolating of solutions for space-fractional wave equations, Advances in Differential Equations and Control Processes, 2017, 18(3), 149-176. doi: 10.17654/DE018030149

    CrossRef Google Scholar

    [6] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific Press, Singapore, 2014.

    Google Scholar

    [7] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Press, Singapore, 2002.

    Google Scholar

    [8] R. Klages, G. Radons and I. M. Sokolov, Anomalous Transport: Foundations and Applications, Wiley-VCH: Hoboken, NJ, USA, 2008.

    Google Scholar

    [9] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.

    Google Scholar

    [10] Y. Luchko, Anomalous diffusion models and their analysis, Forum Berl. Math. Ges., 2011, 19, 53-85.

    Google Scholar

    [11] Y. Luchko and A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations, GEM Int. J. Geomath., 2011, 1(2), 257-276. doi: 10.1007/s13137-010-0012-8

    CrossRef Google Scholar

    [12] Y. Lv, C. Tang and B. Guo, Ground state solution for a class fractional Hamiltonian systems, J. Appl. Anal. Comput., 2018, 8(2), 620-648.

    Google Scholar

    [13] R. L. Magin, Fractional calculus in bioengineering: Parts 1, 2, and 3, Crit. Rev. Biomed. Eng., 2004, 32, 1-104; 2004, 32, 105-193; 2004, 32, 195-377.

    Google Scholar

    [14] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.

    Google Scholar

    [15] R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 2004, 37(31), R161-R208. doi: 10.1088/0305-4470/37/31/R01

    CrossRef Google Scholar

    [16] N. D. Mutlubas, On the Cauchy problem for the fractional Camassa-Holm equation, Monatsh. Math., 2019, 190(4), 755-768. doi: 10.1007/s00605-019-01278-6

    CrossRef Google Scholar

    [17] N. Pan, P. Pucci and B. Zhang, Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, J. Evol. Equ., 2018, 18(2), 385-409. doi: 10.1007/s00028-017-0406-2

    CrossRef Google Scholar

    [18] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 2013, 33(5), 2105-2137. doi: 10.3934/dcds.2013.33.2105

    CrossRef Google Scholar

    [19] J. Shao, B. Guo and L. Duan, Analytical study of the two-dimensional time-fractional Navier-Stokes equations, J. Appl. Anal. Comput., 2019, 9(5), 1999-2022.

    Google Scholar

    [20] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers. Vol. Ⅰ Background and Theory, Vol. Ⅱ Applications, Springer, Heidelberg, 2013.

    Google Scholar

Article Metrics

Article views(2623) PDF downloads(498) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint