2021 Volume 11 Issue 2
Article Contents

Jie Bai, Chayu Yang, Xueying Wang, Jin Wang. MODELING THE WITHIN-HOST DYNAMICS OF CHOLERA: BACTERIAL-VIRAL-IMMUNE INTERACTION[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 690-710. doi: 10.11948/20190241
Citation: Jie Bai, Chayu Yang, Xueying Wang, Jin Wang. MODELING THE WITHIN-HOST DYNAMICS OF CHOLERA: BACTERIAL-VIRAL-IMMUNE INTERACTION[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 690-710. doi: 10.11948/20190241

MODELING THE WITHIN-HOST DYNAMICS OF CHOLERA: BACTERIAL-VIRAL-IMMUNE INTERACTION

  • We present a mathematical model to investigate the within-host dynamics of cholera.We formulate a system of nonlinear differential equations to describe the evolution and interplay of the pathogenic bacteria at different stages, the viruses, and the immune response inside the human body.Our analysis shows that the basic reproduction number of this model is determined collectively by the bacterial, viral and immune reproduction numbers, and that the bacterial-viral-immune interaction shapes the complex dynamics of cholera infection within a human host.

    MSC: 34A34, 37N25
  • 加载中
  • [1] M. Ali, A. R. Nelson, A. L. Lopez, and D. A. Sack, Updated global burden of cholera in endemic countries, PLoS. Negl. Trop. Dis., 2015, 9(6), e0003832. doi: 10.1371/journal.pntd.0003832

    CrossRef Google Scholar

    [2] A. Bechette, T. Stojsavljevic, M. Tessmer et al., Mathematical modeling of bacteria-virus interactions in Lake Michigan incorporating phosphorus content, J. Great Lakes Res., 2013, 39, 646-654. doi: 10.1016/j.jglr.2013.09.003

    CrossRef Google Scholar

    [3] B. Boldin and O. Diekmann, Superinfections can induce evolutionarily stable coexistence of pathogens, J. Math. Biol., 2008, 56, 635-672. doi: 10.1007/s00285-007-0135-1

    CrossRef Google Scholar

    [4] V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemiol. Sante Publique, 1979, 27(2), 121-132.

    Google Scholar

    [5] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 2004, 1(2), 361-404. doi: 10.3934/mbe.2004.1.361

    CrossRef Google Scholar

    [6] X. Cen, Z. Feng and Y. Zhao, Emerging disease dynamics in a model coupling within- host and between-host systems, J. Theor. Biol., 2014, 361, 141-151. doi: 10.1016/j.jtbi.2014.07.030

    CrossRef Google Scholar

    [7] D. Coombs, M. A. Gilchrist and C. L. Ball, Evaluating the importance of within-and between-host selection pressures on the evolution of chronic pathogens, Theor. Popul. Biol., 2007, 72, 576-591. doi: 10.1016/j.tpb.2007.08.005

    CrossRef Google Scholar

    [8] Z. Feng, J. Velasco-Hernandez and B. Tapia-Santos, A mathematical model for coupling within-host and between-host dynamics in an environmentally-driven infectious disease, Math. Biosci., 2013, 241(1), 49-55. doi: 10.1016/j.mbs.2012.09.004

    CrossRef Google Scholar

    [9] Z. Feng, J. Velasco-Hernandez, B. Tapia-Santos et al., A model for coupling within-host and between-host dynamics in an infectious disease, Nonlinear Dyn., 2012, 68, 401-411. doi: 10.1007/s11071-011-0291-0

    CrossRef Google Scholar

    [10] W. Garira, D. Mathebula and R. Netshikweta, A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment, Math. Biosci., 2014, 256, 58-78. doi: 10.1016/j.mbs.2014.08.004

    CrossRef Google Scholar

    [11] M. A. Gilchrist and D. Coombs, Evolution of virulence: Interdependence, constraints, and selection using nested models, Theor. Popul. Biol., 2006, 69, 145-153. doi: 10.1016/j.tpb.2005.07.002

    CrossRef Google Scholar

    [12] M. A. Gilchrist and A. Sasaki, Modeling host-parasite coevolution: a nested approach based on mechanistic models, J. Theor. Biol., 2002, 218, 289-308. doi: 10.1006/jtbi.2002.3076

    CrossRef Google Scholar

    [13] D. M. Hartley, J. G. Morris and D. L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med., 2006, 3, 0063-0069.

    Google Scholar

    [14] D. He, X. Wang, D. Gao, and J. Wang, Modeling the 2016-2017 Yemen cholera outbreak with the impact of limited medical resources, J. Theor. Biol., 2018, 451, 80-85. doi: 10.1016/j.jtbi.2018.04.041

    CrossRef Google Scholar

    [15] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 2000, 42(4), 599-653. doi: 10.1137/S0036144500371907

    CrossRef Google Scholar

    [16] M. Martcheva, S. Lenhart, S. Eda, D. Klinkenberg et al., An immuno-epidemiological model for Johne's disease in cattle, Vet. Res., 2015, 46(1), 69. doi: 10.1186/s13567-015-0190-3

    CrossRef Google Scholar

    [17] M. Martcheva and X. Li, Linking immunological and epidemiological dynamics of HIV: the case of super-infection, J. Biol. Dyn., 2013, 7(1), 161-182. doi: 10.1080/17513758.2013.820358

    CrossRef Google Scholar

    [18] N. Mideo, S. Alizon and T. Day, Linking within- and between-host disease dynamics in the evolutionary epidemiology of infectious diseases, Trends Ecol. Evol., 2008, 23(9), 511-517. doi: 10.1016/j.tree.2008.05.009

    CrossRef Google Scholar

    [19] Z. Mukandavire, S. Liao, J. Wang et al., Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc. Natl. Acad. Sci. USA, 2011, 108(21), 8767-8772. doi: 10.1073/pnas.1019712108

    CrossRef Google Scholar

    [20] E. J. Nelson, J. B. Harris, J. G. Morris et al., Cholera transmission: the host, pathogen and bacteriophage dynamics, Nat. Rev. Microbiol., 2009, 7(10), 693-702. doi: 10.1038/nrmicro2204

    CrossRef Google Scholar

    [21] D. Posny and J. Wang, Modelling cholera in periodic environments, J. Biol. Dyn., 2014, 8(1), 1-19. doi: 10.1080/17513758.2014.896482

    CrossRef Google Scholar

    [22] M. Shen, Y. Xiao and L. Rong, Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics, Math. Biosci., 2015, 263, 37-50. doi: 10.1016/j.mbs.2015.02.003

    CrossRef Google Scholar

    [23] Z. Shuai and P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 2013, 73(4), 1513-1532. doi: 10.1137/120876642

    CrossRef Google Scholar

    [24] H. L. Smith and R. T. Trevino, Bacteriophage infection dynamics: multiple host binding sites, Math. Model. Nat. Phenom., 2009, 4(6), 109-134. doi: 10.1051/mmnp/20094604

    CrossRef Google Scholar

    [25] J. Tian and J. Wang, Global stability for cholera epidemic models, Math. Biosci., 2011, 232(1), 31-41. doi: 10.1016/j.mbs.2011.04.001

    CrossRef Google Scholar

    [26] J. H. Tien and D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 2010, 72(6), 1506-1533. doi: 10.1007/s11538-010-9507-6

    CrossRef Google Scholar

    [27] A. R. Tuite, J. H. Tien, M. C. Eisenberg et al., Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med., 2011, 154(9), 593-601. doi: 10.7326/0003-4819-154-9-201105030-00334

    CrossRef Google Scholar

    [28] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180, 29-48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [29] M. K. Waldor and J. J. Mekalanos, Lysogenic conversion by a filamentous phage encoding cholera toxin, Science, 1996, 272(5270), 1910-1914. doi: 10.1126/science.272.5270.1910

    CrossRef Google Scholar

    [30] J. Wang and S. Liao, A generalized cholera model and epidemic-endemic analysis, J. Biol. Dyn., 2012, 6(2), 568-589. doi: 10.1080/17513758.2012.658089

    CrossRef Google Scholar

    [31] X. Wang and J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 2015, 9(1), 233-261.

    Google Scholar

    [32] X. Wang, D. Gao and J. Wang, Influence of human behavior on cholera dynamics, Math. Biosci., 2015, 267, 41-52. doi: 10.1016/j.mbs.2015.06.009

    CrossRef Google Scholar

    [33] X. Wang and J. Wang, Disease dynamics in a coupled cholera model linking within-host and between-host interactions, J. Biol. Dyn., 2017, 11(S1), 238-262.

    Google Scholar

    [34] X. Wang and J. Wang, Modeling the within-host dynamics of cholera: bacterial-viral interaction, J. Biol. Dyn., 2017, 11(S2), 484-501.

    Google Scholar

    [35] C. Yang, D. Posny, F. Bao, and J. Wang, A multi-scale cholera model linking between-host and within-host dynamics, Int. J. Biomath., 2018, 11(3), 1850034. doi: 10.1142/S1793524518500341

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(3510) PDF downloads(584) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint