2021 Volume 11 Issue 2
Article Contents

Lian-Bo Yang, Yuan Yuan, Jin-Lin Liu. SOME GEOMETRIC PROPERTIES OF MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 790-797. doi: 10.11948/20190411
Citation: Lian-Bo Yang, Yuan Yuan, Jin-Lin Liu. SOME GEOMETRIC PROPERTIES OF MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 790-797. doi: 10.11948/20190411

SOME GEOMETRIC PROPERTIES OF MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI

  • Corresponding author: Email address: jlliu@yzu.edu.cn(J. Liu)
  • Fund Project: This work is supported by the National Natural Science Foundation of China (Grant No. 11571299) and by Gaoxiao Natural Science Foundation of Anhui Province (Grant No. KJ2019A1198)
  • By using the first-order differential subordination, a new class $ \mathcal{M}_n(\alpha) $ of multivalent analytic functions associated with the lemniscate of Bernoulli is introduced. Several geometric properties of this class are given.

    MSC: 30C45, 30C80
  • 加载中
  • [1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 2012, 218, 6557–6565.

    Google Scholar

    [2] M. K. Aouf, A. O. Mostafa and H. M. Zayed, Mapping properties for convolution involving hypergeometric series, Ukrainian. Math. J., 2019, 70, 1688–1699. doi: 10.1007/s11253-019-01611-0

    CrossRef Google Scholar

    [3] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 2019, 45, 213–232. doi: 10.1007/s41980-018-0127-5

    CrossRef Google Scholar

    [4] N. E. Cho, H. J. Lee, J. H. Park and R. Srivastava, Some applications of the frst-order differential subordination, Filomat, 2016, 30, 1456–1474.

    Google Scholar

    [5] J. Dziok, Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed., 2012, 32, 765–774.

    Google Scholar

    [6] J. Liu and R. Srivastava, A linear operator associated with the Mittag-Leffler function and related conformal mappings, J. Appl. Anal. Comput., 2018, 8, 1886–1892.

    Google Scholar

    [7] S. Mahmood and J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 2017, 71, 1345–1357. doi: 10.1007/s00025-016-0592-1

    CrossRef Google Scholar

    [8] S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Michigan Math. J., 1981, 28, 157–171.

    Google Scholar

    [9] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc., 2015, 52, 727–749. doi: 10.4134/JKMS.2015.52.4.727

    CrossRef Google Scholar

    [10] J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 1996, 19, 101– 105.

    Google Scholar

    [11] H. M. Srivastava, M. K. Aouf, A. O. Mostafa and H. M. Zayed, Certain subordination-preserving family of integral operators associated with p-valent functions, Appl. Math. Inform. Sci., 2017, 11, 951–960. doi: 10.18576/amis/110401

    CrossRef Google Scholar

    [12] H. M. Srivastava, B. Khan, N. Khan and Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 2019, 48, 407–425. doi: 10.14492/hokmj/1562810517

    CrossRef Google Scholar

Article Metrics

Article views(2723) PDF downloads(328) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint