Citation: | Lian-Bo Yang, Yuan Yuan, Jin-Lin Liu. SOME GEOMETRIC PROPERTIES OF MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI[J]. Journal of Applied Analysis & Computation, 2021, 11(2): 790-797. doi: 10.11948/20190411 |
By using the first-order differential subordination, a new class $ \mathcal{M}_n(\alpha) $ of multivalent analytic functions associated with the lemniscate of Bernoulli is introduced. Several geometric properties of this class are given.
[1] | R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput., 2012, 218, 6557–6565. |
[2] | M. K. Aouf, A. O. Mostafa and H. M. Zayed, Mapping properties for convolution involving hypergeometric series, Ukrainian. Math. J., 2019, 70, 1688–1699. doi: 10.1007/s11253-019-01611-0 |
[3] | N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., 2019, 45, 213–232. doi: 10.1007/s41980-018-0127-5 |
[4] | N. E. Cho, H. J. Lee, J. H. Park and R. Srivastava, Some applications of the frst-order differential subordination, Filomat, 2016, 30, 1456–1474. |
[5] | J. Dziok, Classes of meromorphic functions associated with conic regions, Acta Math. Sci. Ser. B Engl. Ed., 2012, 32, 765–774. |
[6] | J. Liu and R. Srivastava, A linear operator associated with the Mittag-Leffler function and related conformal mappings, J. Appl. Anal. Comput., 2018, 8, 1886–1892. |
[7] | S. Mahmood and J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 2017, 71, 1345–1357. doi: 10.1007/s00025-016-0592-1 |
[8] | S. S. Miller and P. T. Mocanu, Differential subordination and univalent functions, Michigan Math. J., 1981, 28, 157–171. |
[9] | V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc., 2015, 52, 727–749. doi: 10.4134/JKMS.2015.52.4.727 |
[10] | J. Sokól and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 1996, 19, 101– 105. |
[11] | H. M. Srivastava, M. K. Aouf, A. O. Mostafa and H. M. Zayed, Certain subordination-preserving family of integral operators associated with p-valent functions, Appl. Math. Inform. Sci., 2017, 11, 951–960. doi: 10.18576/amis/110401 |
[12] | H. M. Srivastava, B. Khan, N. Khan and Q. Z. Ahmad, Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 2019, 48, 407–425. doi: 10.14492/hokmj/1562810517 |