2021 Volume 11 Issue 3
Article Contents

Temesgen Desta Leta, Wenjun Liu, Abdelfattah El Achab. DYNAMICS OF SINGULAR TRAVELING WAVE SOLUTIONS OF A SHORT CAPILLARY-GRAVITY WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1191-1207. doi: 10.11948/20200032
Citation: Temesgen Desta Leta, Wenjun Liu, Abdelfattah El Achab. DYNAMICS OF SINGULAR TRAVELING WAVE SOLUTIONS OF A SHORT CAPILLARY-GRAVITY WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1191-1207. doi: 10.11948/20200032

DYNAMICS OF SINGULAR TRAVELING WAVE SOLUTIONS OF A SHORT CAPILLARY-GRAVITY WAVE EQUATION

  • Corresponding author: Email: wjliu@nuist.edu.cn (W. Liu) 
  • Fund Project: The first author is supported by the Talented Young Scientist Program of Ministry of Science and Technology of China (Ethiopia -18-010) and the National Natural Science Foundation of China (No. 11950410502). The second author is supported by the National Natural Science Foundation of China (No. 11771216) and the Six Talent Peaks Project in Jiangsu Province (No. 2015-XCL-020)
  • In this paper, dynamical behaviour of traveling wave solutions to a short capillary-gravity equation is analyzed by using the method of bifurcation. When the phase orbits intersects the singular parabola $ y^2 = 2\phi/\lambda $ on the phase plane, then the trajectories create a weaker wave fronts than the regular traveling wave solutions. By using proper Euler transformations, we reformulate the model as a singular chaotic problem, which can then be analyzed using the singularity study. We prove existence of three types of physically realistic traveling wave solutions to the case of small diffusion for the first time, two-peaked solitary waves, three-peaked and multi-peaked periodic wave solutions.

    MSC: 24C23, 24K18, 37C27, 37C29
  • 加载中
  • [1] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London, Ser. A, 1972, 272, 47-78. doi: 10.1098/rsta.1972.0032

    CrossRef Google Scholar

    [2] C. H. Borzi, R. A. Kraenkel, M. A. Manna and A. Pereira, Nonlinear dynamics of short traveling capillary-gravity waves, Phys. Rev. E, 2005, 71, 0263071-9.

    Google Scholar

    [3] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971.

    Google Scholar

    [4] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 1993, 71, 1661-1664. doi: 10.1103/PhysRevLett.71.1661

    CrossRef Google Scholar

    [5] A. Chen and et al. Effects of quadratic singular curves in integrable equations, Stud. Appl. Math., 2015, 134, 24-61.

    Google Scholar

    [6] A. Das and A. Ganguly, Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect, Commun. Nonlin. Sci. Numer. Simulat, 2017, 48, 326-339. doi: 10.1016/j.cnsns.2016.12.032

    CrossRef Google Scholar

    [7] A. Das, N. Ghosh and K. Ansari, Bifurcation and exact traveling wave solutions for dual power Zakharov-Kuznetsov-Burgers equation with fractional temporal evolution, Comp. & Math. with Appl., 2018, 75(1), 59-69.

    Google Scholar

    [8] H. R. Dullin, G. Gottwald and D. D. Holm, An integrable shallow water equation with linear and non-linear dispersion, Phys. Rev. Lett., 2001, 87, 4501-4504.

    Google Scholar

    [9] A. S. Fokas and Q. Liu, Asymptotic integrability of water waves, Phys. Rev. Lett., 1996, 77, 2347-2351. doi: 10.1103/PhysRevLett.77.2347

    CrossRef Google Scholar

    [10] A. Geyer and M. Víctor, Singular solutions for a class of traveling wave equations arising in hydrodynamics, NonlinearAnal. RWA, 2016, 31, 57-76. doi: 10.1016/j.nonrwa.2016.01.009

    CrossRef Google Scholar

    [11] A. E. Green, N. Laws and P. M. Nagdhi, On the theory of water waves, Proc. R. Soc. London, Ser. A, 1974, 338, 43-55. doi: 10.1098/rspa.1974.0072

    CrossRef Google Scholar

    [12] A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 1976, 78, 237-246. doi: 10.1017/S0022112076002425

    CrossRef Google Scholar

    [13] R. Hakl and M. Zamora, Periodic solutions to second-order indefinite singular equations, J. Differential Equations, 2017, 263(1), 451-469. doi: 10.1016/j.jde.2017.02.044

    CrossRef Google Scholar

    [14] D. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel and a new type of long stationary waves, Philos. Mag., 1895, 39, 422-443. doi: 10.1080/14786449508620739

    CrossRef Google Scholar

    [15] T. D. Leta and J. Li, Dynamical behavior of traveling wave solutions of a long waves-short waves resonance model, Qual. Theory Dyn. Syst., 2018, 27, 1750129. doi: 10.1007/s12346-018-0310-3

    CrossRef Google Scholar

    [16] J. Li, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions, Science, Beijing, 2013.

    Google Scholar

    [17] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17, 4049-4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [18] M. A. Manna and V. Merle, Modified Korteweg-De Vries hierarchies in multiple-time variables and the solutions of modified Boussinesq equations, Proc Math. Phys. Engin. Sci., 1998, 454, 1445-1456. doi: 10.1098/rspa.1998.0215

    CrossRef Google Scholar

    [19] M. A. Manna and A. Neveu, A singular integrable equation from short capillary-gravity waves, preprint arXiv: physics/0303085(2003) 1-4.

    Google Scholar

    [20] O. Nwogu, Alternative form of Boussinesq equations for near shore wave propagation, J. Waterway, Port, Coastal, Ocean Engng, ASCE, 1993, 119, 618-638. doi: 10.1061/(ASCE)0733-950X(1993)119:6(618)

    CrossRef Google Scholar

    [21] R. A. Seadawy, D. Lu and M. A. Khater, Bifurcations of solitary wave solutions for the three dimensional Zakharov-Kuznetsov-Burgers equation and Boussinesq equation with dual dispersion, Optik, 2017, 143, 104-114. doi: 10.1016/j.ijleo.2017.06.020

    CrossRef Google Scholar

Figures(10)

Article Metrics

Article views(2960) PDF downloads(389) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint