2021 Volume 11 Issue 3
Article Contents

Bashir Ahmad, Madeaha Alghanmi, Ahmed Alsaedi. A STUDY OF GENERALIZED CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH STEILTJES-TYPE FRACTIONAL INTEGRAL BOUNDARY CONDITIONS VIA FIXED-POINT THEORY[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1208-1221. doi: 10.11948/20200049
Citation: Bashir Ahmad, Madeaha Alghanmi, Ahmed Alsaedi. A STUDY OF GENERALIZED CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH STEILTJES-TYPE FRACTIONAL INTEGRAL BOUNDARY CONDITIONS VIA FIXED-POINT THEORY[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1208-1221. doi: 10.11948/20200049

A STUDY OF GENERALIZED CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH STEILTJES-TYPE FRACTIONAL INTEGRAL BOUNDARY CONDITIONS VIA FIXED-POINT THEORY

  • In this paper, we discuss the existence of solutions for generalized Caputo fractional differential equations and inclusions equipped with Steiltjes-type fractional integral boundary conditions via fixed-point theory. Examples are constructed for illustrating the obtained results.

    MSC: 26A33, 34A60, 34B15, 34K05
  • 加载中
  • [1] B. Ahmad, A. Alsaedi, S. K. Ntouyas and J. Tariboon, Hadamard-type Fractional Differential Equations, Inclusions and Inequalities Springer, Cham, 2017.

    Google Scholar

    [2] B. Ahmad, S.K. Ntouyas and J. Tariboon, On inclusion problems involving Caputo and Hadamard fractional derivatives Acta Math. Univ. Comenian. (N.S.), 2020, 89(1), 169-183.

    Google Scholar

    [3] K. Aissani, M. Benchohra and M. A. Darwish, Semilinear fractional order integro-differential inclusions with infinite delay Georgian Math. J., 2018, 25(3), 317-327. doi: 10.1515/gmj-2016-0063

    CrossRef Google Scholar

    [4] A. Alsaedi, B. Ahmad and M. Alghanmi, Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions Appl. Math. Lett., 2019, 91, 113-120. doi: 10.1016/j.aml.2018.12.006

    CrossRef Google Scholar

    [5] A. Carvalho and C. M. A. Pinto, A delay fractional order model for the co-infection of malaria and HIV/AIDS Int. J. Dyn. Control, 2017, 5(1), 168-186. doi: 10.1007/s40435-016-0224-3

    CrossRef Google Scholar

    [6] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    Google Scholar

    [7] Z. Cen, L. -B. Liu and J. Huang, A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative Appl. Math. Lett., 2020, 102, 106086, 8 pp.

    Google Scholar

    [8] A. Cernea, On some fractional integro-differential inclusions with nonlocal multi-point boundary conditions Fract. Differ. Calc., 2019, 9, 139-148.

    Google Scholar

    [9] Y. Cheng, R.P. Agarwal and D. O'Regan, Existence and controllability for nonlinear fractional differential inclusions with nonlocal boundary conditions and time-varying delay Fract. Calc. Appl. Anal., 2018, 21(4), 960-980. doi: 10.1515/fca-2018-0053

    CrossRef Google Scholar

    [10] H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces Israel J. Math., 1970, 8, 5-11. doi: 10.1007/BF02771543

    CrossRef Google Scholar

    [11] M. F. Danca, Synchronization of piecewise continuous systems of fractional order Nonlinear Dyn., 2014, 78, 2065-2084. doi: 10.1007/s11071-014-1577-9

    CrossRef Google Scholar

    [12] Y. Ding, Z. Wang and H. Ye, Optimal control of a fractional-order HIV-immune system with memory IEEE Trans. Contr. Sys. Techn., 2012, 20, 763-769. doi: 10.1109/TCST.2011.2153203

    CrossRef Google Scholar

    [13] H. A. Fallahgoul, S. M. Focardi and F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application Elsevier/Academic Press, London, 2017.

    Google Scholar

    [14] J. A. Gallegos, N. Aguila-Camacho and M. A. Duarte-Mermoud, Smooth solutions to mixed-order fractional differential systems with applications to stability analysis J. Integral Equations Appl., 2019, 31, 59-84.

    Google Scholar

    [15] C. S. Goodrich, Coercive nonlocal elements in fractional differential equations Positivity, 2017, 21, 377-394. doi: 10.1007/s11117-016-0427-z

    CrossRef Google Scholar

    [16] A. Granas and J. Dugundji, Fixed Point Theory Springer-Verlag, New York, 2003.

    Google Scholar

    [17] J. Henderson and R. Luca, Nonexistence of positive solutions for a system of coupled fractional boundary value problems Bound. Value Probl., 2015, 2015(138). doi: 10.1186/s13661-015-0403-8

    CrossRef Google Scholar

    [18] G. Iskenderoglu and D. Kaya, Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense Chaos Solitons Fractals, 2020, 134, 109684. doi: 10.1016/j.chaos.2020.109684

    CrossRef Google Scholar

    [19] M. Kamenskii, V. Obukhovskii, G. Petrosyan and J. -C. Yao, On semilinear fractional order differential inclusions in Banach spaces Fixed Point Theory, 2017, 18, 269-291. doi: 10.24193/fpt-ro.2017.1.22

    CrossRef Google Scholar

    [20] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

    Google Scholar

    [21] M. Kisielewicz, Stochastic Differential Inclusions and Applications Springer, New York, NY, USA, 2013.

    Google Scholar

    [22] M. Korda, D. Henrion and C. N. Jones, Convex computation of the maximum controlled invariant set for polynomial control systems SIAM J. Control Optim., 2014, 52, 2944-2969. doi: 10.1137/130914565

    CrossRef Google Scholar

    [23] M. A. Krasnoselskii, Two remarks on the method of successive approximations Uspekhi Mat. Nauk, 1955, 10, 123-127.

    Google Scholar

    [24] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1965, 13, 781-786.

    Google Scholar

    [25] N. Laskin, Fractional quantum mechanics and Levy path integrals Phys. Lett. A, 2000, 268, 298-305.

    Google Scholar

    [26] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanis in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997.

    Google Scholar

    [27] Z. Ming, G. Zhang and H. Li, Positive solutions of a derivative dependent second-order problem subject to Stieltjes integral boundary conditions Electron. J. Qual. Theory Differ. Equ., 2019, Paper No. 98, 15 pp.

    Google Scholar

    [28] E. Nadal, E. Abisset-Chavanne, E. Cueto and F. Chinesta, On the physical interpretation of fractional diffusion C. R. Mecanique, 2018, 346, 581-589. doi: 10.1016/j.crme.2018.04.004

    CrossRef Google Scholar

    [29] S. K. Ntouyas, B. Ahmad, M. Alghanmi and A. Alsaedi, Generalized fractional differential equations and inclusions equipped with nonlocal generalized fractional integral boundary conditions Topol. Methods Nonlinear Anal., 2019, 54(2B), 1051-1073.

    Google Scholar

    [30] A. A. Tateishi, H. V. Ribeiro and E. K. Lenzi, The role of fractional time-derivative operators on anomalous diffusion Front. Phys., 2017, 5, 52, pp 9.

    Google Scholar

    [31] Y. Wang, S. Liang and Q. Wang, Existence results for fractional differential equations with integral and multi-point boundary conditions Bound. Value Probl., 2018, 2018: 4. doi: 10.1186/s13661-017-0924-4

    CrossRef Google Scholar

    [32] Y. Xu and W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems Phys. A, 2020, 549, 123903. doi: 10.1016/j.physa.2019.123903

    CrossRef Google Scholar

    [33] Y. Xu, Y. Li and W. Li, Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights Commun. Nonlinear Sci. Numer. Simul., 2020, 85, 105239. doi: 10.1016/j.cnsns.2020.105239

    CrossRef Google Scholar

    [34] Y. Yue, Y. Tian and Z. Bai, Infinitely many nonnegative solutions for a fractional differential inclusion with oscillatory potential Appl. Math. Lett., 2019, 88, 64-72. doi: 10.1016/j.aml.2018.08.010

    CrossRef Google Scholar

Article Metrics

Article views(3090) PDF downloads(579) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint