Citation: | Akbar Zada, Luqman Alam, Jiafa Xu, Wei Dong. CONTROLLABILITY AND HYERS—ULAM STABILITY OF IMPULSIVE SECOND ORDER ABSTRACT DAMPED DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1222-1239. doi: 10.11948/20200059 |
In this paper, we consider system of damped second order abstract impulsive differential equations to investigate its controllability and Hyers—Ulam stability. For our results about the controllability, we utilized the theory of strongly continuous cosine families of linear operators combined with Sadovskii fixed point theorem. In addition, different types of Hyers—Ulam stability is established with the help of Gr?nwall's type inequality and Lipschitz conditions. At last, we give an example of damped wave equation which outline the application of our principle results.
[1] | G. Arthi, and K. Balachandran, Controllability of damped second-order neutral functional differential systems with impulses, Indian J. Pure Appl. Math., 2012, 16(1), 89-106. doi: 10.1007/s10957-011-9926-z |
[2] | T. Hakon Gronwall, Note on the derivatives with respect to a parameter of the solution of a system of differential equations, Ann. of Math., 1919, 20(2), 292-296. |
[3] | D. H. Hyers, G. Isac and T. M. Rassias, Stability of functional equations in several variables, Adv. Appl. Clifford Algebr., 1998. |
[4] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 1941, 27, 222-224. doi: 10.1073/pnas.27.4.222 |
[5] | E. Hernandez, K. Balachandran and N. Annapoorani, Existance results for a damped second order abstract functional differential equation with impulses. Math. Comput. Modelling, 2009, 50, 1583-1594. doi: 10.1016/j.mcm.2009.09.007 |
[6] | T. Li and A. Zada, Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces, Adv. Difference Equ, 2016, 153. doi: 10.1186/s13662-016-0881-8 |
[7] | T. Li, A. Zada, and S. Faisal, Hyers-Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl, 2016, 9, 2070-2075. doi: 10.22436/jnsa.009.05.12 |
[8] | Y. Lin and N. Tanaka, Nonlinear abstract wave equations with strong damping, z J. Math. Anal. Appl, 1998, 225, 46-61. doi: 10.1006/jmaa.1998.5999 |
[9] | V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. |
[10] | Y. Liu and D. O'Regan, Controllability of impulsive functional differential systems with nonlocal conditions, Electron. J. Diff. Equ. 2013, 194, 1-10. |
[11] | M. Muslim, A. Kumar and M. Feckan, Existence, uniqueness and stability of solutions to second order nonlinear differential equation with non-instantaneous impulses, Journal of King Saud, 2018, 30, 204-213. doi: 10.1016/j.jksus.2016.11.005 |
[12] | S. K. Ntouyas and D. O'Regan, Some remarks on controllability of evolution equation in Banach space, Electron. J. Differ. Equ. Monogr, 2009, 79, 1-6. |
[13] | J. Nieto, and D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal. Real World Appl, 2009, 10(2), 680-690. doi: 10.1016/j.nonrwa.2007.10.022 |
[14] | J. Y. Park and H. K. Han, Controllability for some second order differential equations, Bull. Korean Math. Soc, 1997, 34, 411-419. |
[15] | H. Qin, Z. Gu, Y. Fu, and T. Li, Existence of mild solutions and controllability of fractional impulsive integro differential systems with nonlocal conditions, J. Funct. Spaces, 2017, 1-11. |
[16] | Y. V. Rogovchenko, Impulsive evolution systems: Main results and new trends, Dyn. Contin. Discrete Impuls Syst, 1997, 3, 57-88. |
[17] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc, 1978, 72(2), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[18] | A. M. Samoilenko and N. A. Perestyuk, Stability of solutions of differential equations with impulse effect, J. Differ. Equations, 1977, 13, 1981-1992. |
[19] | B. N. Sadovskii, On a fixed point principle, Funct. Anal. Appl, 1967, 1, 74-76. |
[20] | A. M. Samoilenka and N. A. Perestyunk, Impulsive Differential Equations, World Scientific, Singapore, 1995. |
[21] | M. A. Shubov, C. F. Martin, J. P. Dauer and B. Belinskii, Exact controllability of damped wave equation, SIAM J. Control Optim, 1997, 35, 1773-1789. doi: 10.1137/S0363012996291616 |
[22] | S. Tang, A. Zada, S. Faisal, M. M. A. El-Sheikh and T. Li, Stability of higher-order nonlinear impulsive differential equations, J. Nonlinear Sci. Appl, 2016, 9, 4713-4721. doi: 10.22436/jnsa.009.06.110 |
[23] | S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, Interscience Publishers, New York, 1960. |
[24] | P. Wang, C. Li, J. Zhang, and T. Li, Quasilinearization method for first-order impulsive integro-differential equations, Electron. J. Differential Equations, 2019, 1-14. |
[25] | J. Wang, M. Fečkan and Y. Zhou, Ulam's type stability of impulsive deferential equations, J. Math. Ana. Appl, 2012, 395(1), 258-264. doi: 10.1016/j.jmaa.2012.05.040 |
[26] | J. Wang, A. Zada and W. Ali, Ulam's-type stability of first-order impulsive differential equations with variable delay in quasi-Banach spaces, Int. J. Nonlin. Sci. Num, 2018, 19(5), 553-560. doi: 10.1515/ijnsns-2017-0245 |
[27] | J. Wang, M. Fečkan and Y. Tian, Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediter. J. Math, 2017, 14, 1-21. doi: 10.1007/s00009-016-0833-2 |
[28] | D. Xu, and Y. Zhichun, Impulsive delay differential inequality and stability of neural networks. J. Math. Anal. Appl., 2005, 305(1), 107-120. doi: 10.1016/j.jmaa.2004.10.040 |
[29] | X. Xu, Y. Liu, H. Li and F. E. Alsaadi, Synchronization of switched boolean networks with impulsive effects, Int. J. Biomath, 2018, 11, 1850080. doi: 10.1142/S1793524518500808 |
[30] | X. Yu, J. Wang and Y. Zhang, On the β-Ulam-Rassias stability of nonautnonomous impulsive evolution equations, J. Appl. Math. Comput, 2015, 48, 461-475. doi: 10.1007/s12190-014-0813-2 |
[31] | A. Zada, W. Ali and C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type, Appl. Math. Comput, 2019, 350, 60-65. |
[32] | A. Zada, P. Wang, D. Lassoued, and T. Li, Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems, Adv. Difference Equ, 2017, 192. doi: 10.1186/s13662-017-1248-5 |