2021 Volume 11 Issue 3
Article Contents

Changjin Xu, Maoxin Liao, Peiluan Li, Shuai Yuan. NEW INSIGHTS ON BIFURCATION IN A FRACTIONAL-ORDER DELAYED COMPETITION AND COOPERATION MODEL OF TWO ENTERPRISES[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1240-1258. doi: 10.11948/20200087
Citation: Changjin Xu, Maoxin Liao, Peiluan Li, Shuai Yuan. NEW INSIGHTS ON BIFURCATION IN A FRACTIONAL-ORDER DELAYED COMPETITION AND COOPERATION MODEL OF TWO ENTERPRISES[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1240-1258. doi: 10.11948/20200087

NEW INSIGHTS ON BIFURCATION IN A FRACTIONAL-ORDER DELAYED COMPETITION AND COOPERATION MODEL OF TWO ENTERPRISES

  • Corresponding author: Email address: xcj403@126.com(C. Xu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 61673008, 62062016) and Project of High-level Innovative Talents of Guizhou Province ([2016]5651) and Major Research Project of The Innovation Group of The Education Department of Guizhou Province ([2017]039), Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Changsha University of Science & Technology)(2018MMAEZD21) and Foundation of Science and Technology of Guizhou Province ([2019]1051)
  • Over the past decades, many authors establish various kinds of competition and cooperation models of two enterprises to analyze the dynamic interaction. However, they are only concerned with integer-order differential equation models, while the reports on fractional-order ones are very rare. In this article, based on the earlier studies, we propose a new fractional-order delayed competition and cooperation model of two enterprises. Letting the delay be bifurcation parameter and analyzing the corresponding characteristic equation of involved model, we establish some new sufficient conditions to guarantee the stability and the existence of Hopf bifurcation of fractional-order delayed competition and cooperation model of two enterprises. The research indicates that different delays have different effect on the stability and Hopf bifurcation of involved model. The impact of the fractional order on the stability and Hopf bifurcation of involved model is displayed. To check the correctness of theoretical analysis, we implement some computer simulations.

    MSC: 34C23, 34K18, 37GK15, 39A11, 92B20
  • 加载中
  • [1] M. S. Abdelouahab, N. E. Hamri, J. Wang, Hopf bifurcation and chaos in fractional-order modified hybrid optical system, Nonlinear Dyn., 2012, 69(1-2), 275-284. doi: 10.1007/s11071-011-0263-4

    CrossRef Google Scholar

    [2] H. Bao, J. H. Park, J. Cao, Synchronization of fractional-order complex-valued neural networks with time delay, Neural Netw., 2016, 81, 16-28. doi: 10.1016/j.neunet.2016.05.003

    CrossRef Google Scholar

    [3] S. Bhalekar, V. D. Gejji, Chaos in fractional order financial delay system, Comput. Math. Appl., 2016, doi:10.1016/j.camwa.2016.03.009

    CrossRef Google Scholar

    [4] J. Chen, B. Chen, Z. Zeng, O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations, Neural Netw., 2018, 100, 10-24. doi: 10.1016/j.neunet.2018.01.004

    CrossRef Google Scholar

    [5] S. Chen, Y. Lou, J. Wei, Hopf bifurcation in a delayed reaction-diffusion-advection population model, J. Diff. Equat., 2018, 264(8), 5333-5359. doi: 10.1016/j.jde.2018.01.008

    CrossRef Google Scholar

    [6] S. Chen, J. Wei, Stability and bifurcation in a two variable delay model for circadian rhythm of neurospora crassa open archive, J. Math. Anal. Appl., 2014, 411(1), 381-394. doi: 10.1016/j.jmaa.2013.09.045

    CrossRef Google Scholar

    [7] W. Deng, C. Li, J. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 2007, 48(4), 409-416. doi: 10.1007/s11071-006-9094-0

    CrossRef Google Scholar

    [8] A. S. Deshpande, V. D. Gejji, Y. V. Sukale, On Hopf bifurcation in fractional dynamical systems, Chaos, Solitons & Fractals, 2017, 98, 189-198.

    Google Scholar

    [9] S. Djilali, B. Ghanbari, S. Bentout, A. Mezouaghi, Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative, Chaos, Solitons & Fractals, 2020, 138, 109954.

    Google Scholar

    [10] Q. Feng, F. Meng, Traveling wave solutions for fractional partial differential equations arising in mathematical physics by an improved fractional Jacobi elliptic equation method, Math. Meth. Appl. Sci., 2017, 40(10), 3676-3686. doi: 10.1002/mma.4254

    CrossRef Google Scholar

    [11] S. Guo, S. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Diff. Equat., 2016, 260(1), 781-817. doi: 10.1016/j.jde.2015.09.031

    CrossRef Google Scholar

    [12] N. Hamdan, A. Kilicman, A fractional order SIR epidemic model for dengue transmission, Chaos, Solitons & Fractals, 2018, 114, 55-62.

    Google Scholar

    [13] C. Huang, Multiple scales scheme for bifurcation in a delayed extended van der Pol oscillator, Phys. A: Stat. Mech. Appl., 2018, 490, 643-652. doi: 10.1016/j.physa.2017.08.035

    CrossRef Google Scholar

    [14] C. Huang, J. Cao, Impact of leakage delay on bifurcation in high-order fractional BAM neural networks, Neural Netw., 2018, 98, 223-235. doi: 10.1016/j.neunet.2017.11.020

    CrossRef Google Scholar

    [15] C. Huang, J. Cao, M. Xiao, Hybrid control on bifurcation for a delayed fractional gene regulatory network, Chaos, Solitons & Fractals, 2016, 87, 19-29.

    Google Scholar

    [16] C. Huang, J. Cao, M. Xiao, A. Alsaedi, T. Hayat, Bifurcations in a delayed fractional complex-valued neural network, Appl. Math. Comput., 2017, 292, 210-227.

    Google Scholar

    [17] J. Huo, H. Zhao, L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model, Nonlinear Anal-Real., 2015, 26, 289-305. doi: 10.1016/j.nonrwa.2015.05.014

    CrossRef Google Scholar

    [18] J. Jian, P. Wan, Lagrange α-exponential stability and α-exponential convergence for fractional-order complex-valued neural networks, Neural Netw., 2017, 91, 1-10. doi: 10.1016/j.neunet.2017.03.011

    CrossRef Google Scholar

    [19] E. Kaslik, I. R. Rǎdulescu, Dynamics of complex-valued fractional-order neural networks, Neural Netw., 2017, 89, 39-49. doi: 10.1016/j.neunet.2017.02.011

    CrossRef Google Scholar

    [20] K. S. Kim, S. Kim, I. H. Jung, Hopf bifurcation analysis and optimal control of treatment in a delayed oncolytic virus dynamics, Math. Comput. Simul., 2018, 149, 1-16. doi: 10.1016/j.matcom.2018.01.003

    CrossRef Google Scholar

    [21] A. Kumar, V. Kumar, Performance analysis of optimal hybrid novel interval type-2 fractional order fuzzy logic controllers for fractional order systems, Exp. Syst. Appl., 2018, 93, 435-455. doi: 10.1016/j.eswa.2017.10.033

    CrossRef Google Scholar

    [22] L. Li, C. Zhang, X. Yan, Stability and Hopf bifurcation analysis for a two-enterprise interaction model with delays, Neurocomputing, Commun. Nonlinear Sci. Numer. Simul., 2016, 30(1-3), 70-83. doi: 10.1016/j.cnsns.2015.06.011

    CrossRef Google Scholar

    [23] N. Lekdee, S. Sirisubtawee, S. Koonprasert, Bifurcations in a delayed fractional model of glucose-insulin interaction with incommensurate orders, Adv. in Diff. Equat., 2019, 318, 22 pages.

    Google Scholar

    [24] M. Li, J. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 2018, 324, 254-265.

    Google Scholar

    [25] Y. Li, T. Zhang, Global asymptotical stability of a unique almost periodic solution for enterprise clusters based on ecology theory with time-varying delays and feedback controls, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(2), 904-913. doi: 10.1016/j.cnsns.2011.05.036

    CrossRef Google Scholar

    [26] M. Liao, C. Xu, X. Tang, Dynamical behaviors for a competition and cooperation model of enterprises with two delays, Nonlinear Dyn., 2014, 75(1-2), 257-66. doi: 10.1007/s11071-013-1063-9

    CrossRef Google Scholar

    [27] M. Liao, C. Xu, X. Tang, Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay, Commun. Nonlinear Sci. Numer. Simul., 2014, 19(10), 3845-3856. doi: 10.1016/j.cnsns.2014.02.031

    CrossRef Google Scholar

    [28] P. Liu, Y. Li, Permanence for a competition and cooperation model of enterprise cluster with delays and feedback controls, Electron. J. Diff. Equa., 2013, 2013(22), 1-9.

    Google Scholar

    [29] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational engineering in systems and application multi-conference, IMACS. In: IEEE-SMC Proceedings, Lille, 2; 1996. p. 963-8. France; July 1996.

    Google Scholar

    [30] A. S. Mohamadi, A. Pourabbas, S. M. Vaezpour, Periodic solutions of delay differential equations with feedback control for enterprise clusters based on ecology theory, J. Inequa. Appl., 2014, 306, 1-15.

    Google Scholar

    [31] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

    Google Scholar

    [32] A. Pratap, R. Raja, C. Sowmiya, O. Bagdasar, G. Rajchakit, Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses, Neural Netw., 2018, 103, 128-141. doi: 10.1016/j.neunet.2018.03.012

    CrossRef Google Scholar

    [33] K. Rajagopal, A. Karthikeyan, P. Duraisamy, R. Weldegiorgis, G. Tadesse, Bifurcation, Chaos and its control in a fractional order power system model with uncertaities, Asian J. Contr., 2018, 21(1), 1-10.

    Google Scholar

    [34] K. Rajagopal, A. Karthikeyan, A. Srinivasan, Bifurcation and chaos in time delayed fractional order chaotic memfractor oscillator and its sliding mode synchronization with uncertainties, Chaos, Solitons Fract., 2017, 103, 347-356. doi: 10.1016/j.chaos.2017.06.028

    CrossRef Google Scholar

    [35] R. Rakkiyappan, K. Udhayakumar, G. Velmurugan, J. Cao, A. Alsaedi, Stability and Hopf bifurcation analysis of fractional-order complex-valued neural networks with time delays, Adv. Diff. Equat., 2017, 225, 1-25.

    Google Scholar

    [36] T. Shen, J. Xin, J. Huang, Time-space fractional stochastic Ginzburg-Landau equation driven by Gaussian white noise, Stoch. Anal. Appl., 2018, 36(1), 103-113.

    Google Scholar

    [37] Y. Song, Spatio-temporal patterns of Hopf bifurcating periodic oscillations in a pair of identical tri-neuron network loops, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(2), 943-952. doi: 10.1016/j.cnsns.2011.06.005

    CrossRef Google Scholar

    [38] A. G. Soriano-Sánchez, C. Posadas-Castillo, M. A. Platas-Garza, A. Arellano-Delgado, Synchronization and FPGA realization of complex networks with fractional-order Liu chaotic oscillators, Appl. Math. Comput., 2018, 332, 250-262.

    Google Scholar

    [39] B. Tao, M. Xiao, Q. Sun, J. Cao, Hopf bifurcation analysis of a delayed fractional-order genetic regulatory networks model, Neurocomput., 2018, 275, 677-686. doi: 10.1016/j.neucom.2017.09.018

    CrossRef Google Scholar

    [40] W. W. Teka, R. K. Upadhyay, A. Mondal, Spiking and bursting patterns of fractional-order Izhikevich model, Proceed. Commun. Nonlinear Sci. Numer. Simul., 2018, 56, 161-176. doi: 10.1016/j.cnsns.2017.07.026

    CrossRef Google Scholar

    [41] G. Velmurugan, R. Rakkiyappan, V. Vembarasan, J. Cao, A. Alsaedi, Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay, Neural Netw., 2017, 86, 42-53. doi: 10.1016/j.neunet.2016.10.010

    CrossRef Google Scholar

    [42] Y. Wang, J. Jiang, Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian, Adv. Diff. Equat., 2017, 337, 1-19.

    Google Scholar

    [43] Y. Wang, L. Liu, Positive solutions for a class of fractional 3-point boundary value problems at resonance, Adv. Diff. Equa., 2017, 7, 1-13. doi: 10.1186/s13662-016-1062-5

    CrossRef Google Scholar

    [44] X. Wang, Z. Wang, J. Xia, Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders, J. Franklin Inst., 2019, 356(15), 8278-8295. doi: 10.1016/j.jfranklin.2019.07.028

    CrossRef Google Scholar

    [45] Z. Wang, X. Wang, Y. Li, X. Huang, Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay, Int. J. Bifur. Chaos, 2017, 27(13), 1750209. doi: 10.1142/S0218127417502091

    CrossRef Google Scholar

    [46] Z. Wang, Y. Xie, J. Lu, Y. Li, Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition, Appl. Math. Comput., 2019, 347, 360-369.

    Google Scholar

    [47] M. Xiao, G. Jiang, W. Zheng, S. Yan, Y. Wan, C. Fan, Bifurcation control od a fractional-order van der pol oscillator based on the state feedback, Asian J. Contr., 2015, 17(5), 1755-1766.

    Google Scholar

    [48] M. Xiao, W. Zheng, J. Lin, G. Jiang, L. Zhao, Fractional-order PD control at Hopf bifurcation in delayed fractional-order small-world networks, J. Franklin Inst., 2017, 354(17), 7643-7667. doi: 10.1016/j.jfranklin.2017.09.009

    CrossRef Google Scholar

    [49] C. Xu, Local and global Hopf bifurcation analysis on simplified bidirectional associative memory neural networks with multiple delays, Math. Comput. Simul., 2018, 149, 69-90. doi: 10.1016/j.matcom.2018.02.002

    CrossRef Google Scholar

    [50] C. Xu, Periodic solution of competition and corporation dynamical model of two enterprises on time scales, J. Quant. Econ., 2012, 29(2), 1-4.

    Google Scholar

    [51] C. Xu, M. Liao, Bifurcation analysis of an autonomous epidemic predator-prey model with delay, Ann. Mat. Pur. Appl., 2014, 193(1), 23-28. doi: 10.1007/s10231-012-0264-z

    CrossRef Google Scholar

    [52] C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: The case of Hopf bifurcation, Math. Comput. Simul., 2021, 182, 471-494. doi: 10.1016/j.matcom.2020.11.023

    CrossRef Google Scholar

    [53] C. Xu, Y. Shao, Existence and global attractivity of periodic solution for enterprise clusters based on ecology theory with impulse, J. Appl. Math. Comput., 2012, 39(1-2), 367-384. doi: 10.1007/s12190-011-0530-z

    CrossRef Google Scholar

    [54] C. Xu, X. Tang, M. Liao, Frequency domain analysis for bifurcation in a simplified tri-neuron BAM network model with two delays, Neural Netw., 2010, 23(7), 872-880. doi: 10.1016/j.neunet.2010.03.004

    CrossRef Google Scholar

    [55] C. Xu, X. Tang, M. Liao, Stability and bifurcation analysis of a delayed predator-prey model of prey dispersal in two-patch environments, Appl. Math. Comput., 2010, 216(10), 2920-2936.

    Google Scholar

    [56] C. Xu, X. Tang, M. Liao, Stability and bifurcation analysis of a six-neuron BAM neural network model with discrete delays, Neurocomput., 2011, 74(5), 689-707. doi: 10.1016/j.neucom.2010.09.002

    CrossRef Google Scholar

    [57] C. Xu, Y. Wu, Bifurcation and control of chaos in a chemical system, Appl. Math. Modelling, 2015, 39(8), 2295-2310. doi: 10.1016/j.apm.2014.10.030

    CrossRef Google Scholar

    [58] C. Xu, Q. Zhang, Bifurcation analysis of a tri-neuron neural network model in the frequency domain, Nonlinear Dyna., 2014, 76(1), 33-46. doi: 10.1007/s11071-013-1107-1

    CrossRef Google Scholar

    [59] X. Yang, C. Li, Q. Song, J. Chen, J. Huang, Global Mittag-Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons, Neural Netw., 2018, 105, 88-103. doi: 10.1016/j.neunet.2018.04.015

    CrossRef Google Scholar

    [60] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion, Appl. Math. Lett., 2017, 66, 1-8. doi: 10.1016/j.aml.2016.10.015

    CrossRef Google Scholar

    [61] Y. Zhi, Z. Ding, Y. Li, Permanence and almost periodic solution for an enterprise cluster model based on ecology theory with feedback controls on time scales, Discrete Dyn. Nat. Soc., Volume 2013, Article ID 639138, 14 pages.

    Google Scholar

    [62] B. Zhu, L. Liu, Y. Wu, Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Comput. Math. Appl., 2019, 78(6), 1811-1818. doi: 10.1016/j.camwa.2016.01.028

    CrossRef Google Scholar

    [63] F. Zouari, A. Ibeas, A. Boulkroune, J. Cao, M. M. Arefi, Adaptive neural output-feedback control for nonstrict-feedback time-delay fractional-order systems with output constraints and actuator nonlinearities, Neural Netw., 2018, 105, 256-276. doi: 10.1016/j.neunet.2018.05.014

    CrossRef Google Scholar

    [64] M. Zuo, X. Hao, L. Liu, Y. Cui, , Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017, 161, 1-15.

    Google Scholar

Figures(16)  /  Tables(2)

Article Metrics

Article views(3281) PDF downloads(399) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint