Citation: | Chengfeng Sun, Lijuan Su, Hui Liu. ON THE WELL-POSEDNESS OF THE STOCHASTIC 2D PRIMITIVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1273-1295. doi: 10.11948/20200132 |
Under non-Lipschitz conditions for the external force term and noise term, the two-dimensional stochastic primitive equations are studied in this paper. Based on Galerkin method, iterative method and the moment estimations, we prove the existence and uniqueness of the solutions in a fixed probability space.
[1] | D. Barbu and G. Bocşan, Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients, Czechoslovak Math. J., 2002, 127, 87-95. |
[2] | C. Cao and E. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Mathematics, 2007, 166(1), 245-267. doi: 10.4007/annals.2007.166.245 |
[3] | B. Cushman-Roisin, Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, Academic Press, 2011. |
[4] | A. Debussche, N. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Physica D: Nonlinear Phenomena, 2011, 240(14), 1123-1144. |
[5] | A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane, Glabal existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplitive white noise, Nonlinearity, 2012, 25(7), 2093-2118. doi: 10.1088/0951-7715/25/7/2093 |
[6] | Z. Dong, J. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations, 2017, 263(5), 3110-3146. doi: 10.1016/j.jde.2017.04.025 |
[7] | Z. Dong and R. Zhang, On the small time asymptotics of 3D stochastic primitive equations, Math Meth Appl Sci., 2018, 41(16), 6336-6357. doi: 10.1002/mma.5142 |
[8] | B. Ewald, M. Petcu and R. Temam, Stochastic solutions of the two-dimensional primitive equations of the ocean and atmospherewith an additive noise, Analysis and Applications, 2007, 5(02), 183-198. doi: 10.1142/S0219530507000948 |
[9] | H. Gao and C. Sun, Random attractor for the 3d viscous stochastic primitive equations with additive noise, Stochastics and Dynamics, 2009, 9(02), 293-313. doi: 10.1142/S0219493709002683 |
[10] | H. Gao and C. Sun, Well-posedness and large deviations for the stochastic primitive equations in two space dimensions, Communications in Mathematical Sciences, 2012, 10(2), 233-273. |
[11] | N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensinonal stochastic primitive equations, J. Math. Phys. 2014, 55(5), 051504, arXiv: 1311. 4204v1. |
[12] | N. Glatt-Holtz and R. Temam, Pathwise solutions of the 2-d stochastic primitive equations, Applied Mathematics & Optimization, 2011, 63(3), 401-433. |
[13] | N. Glatt-Holtz and M. Ziane, The stochastic primitive equations in two space dimensions with multiplicative noise, Discrete and Continuous Dynamical System-Series B, 2012, 10(4), 801-822. |
[14] | F. Guillen-Gonzalez, N. Masmoudi and M. A. Rodriguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 2001, 14(1), 1381-1408. |
[15] | B. Guo and D. Huang, 3d stochastic primitive equations of the large-scale oceans: global well-posedness and attractors, Communications in Mathematical Physics, 2009, 286(2), 697-723. doi: 10.1007/s00220-008-0654-7 |
[16] | C. Hu, R. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations, Chinese Annals of Mathematics, Series B, 2002, 23(2), 277-292. doi: 10.1142/S0252959902000262 |
[17] | N. Ju, On H2 solutions and z-weak solutions of the 3D primitive equations, Mathematics, 2015, 66(3), 973-996. |
[18] | N. Ju, Uniqueness of some weak solutions for 2D viscous primitive equations, arXiv: 1706.10246v3. |
[19] | G. M. Kobelkov, Existence of a solution 'in the large' for ocean dynamics equations, J. Math. Fluid Mech., 2007, 9(4), 588-610. doi: 10.1007/s00021-006-0228-4 |
[20] | I. Kukavica, Y. Pei, W. Rusin and M. Ziane, Primitive equations with continuous initial data, Nonlinearity, 2014, 27(6), 1135-1155. doi: 10.1088/0951-7715/27/6/1135 |
[21] | I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 2007, 20(12), 2739-2753. doi: 10.1088/0951-7715/20/12/001 |
[22] | H. Kunita, Stochastic Flows and Stochastic Differential Equations, New York : Cambridge University Press, 1990. |
[23] | J. Li and E. Titi, Existence and uniqueness of weak solutions to viscous primitive equations for a certain class of discontinuous initial data, SIAM. J. Math. Anal., 2017, 49(1), 1-28. doi: 10.1137/15M1050513 |
[24] | J. L. Lions, R. Temam and S. Wang, Models for the coupled atmosphere and ocean, Elsevier Science Publishers B. V., 1993, 1(1), 3-4. |
[25] | J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 1992, 5(2), 237-288. doi: 10.1088/0951-7715/5/2/001 |
[26] | J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean, Nonlinear, 1992, 5(5), 1007-1053. doi: 10.1088/0951-7715/5/5/002 |
[27] | R. Mikulevicius and B. Rozovskii, On Equations of Stochastic Fluid Mechanics, Birkhäuser Boston, 2001. |
[28] | J. Pedlosky, Geophysical Fluid Dynamics, Spring-Verlag, New York, 1987. |
[29] | M. Petcu, R. Temam and D. Wirosoetisno, Existence and regularity results for the primitive equations in two space dimensions, Communications on Pure and Applied Analysis, 2004, 3(1), 115-131. doi: 10.3934/cpaa.2004.3.115 |
[30] | M. Petcu, R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, Handbook of Numerical Analysis, 2009, 14(8), 577-750. |
[31] | C. Sun and H. Gao, Well-posedness for the stochastic 2d primitive equations with Lévy noise, Science China Mathematics, 2013, 56(8), 1629-1645. doi: 10.1007/s11425-013-4590-4 |
[32] | T. Tachim Medjo, On the uniqueness of z-weak solutions of the three dimensional primitive equations of the ocean, Nonlinear Anal. Real World Appl., 2010, 11(3), 1413-1421. doi: 10.1016/j.nonrwa.2009.02.031 |
[33] | T. Taniguchi, The existence of energy solutions to 2-dimensional non-lipschitz stochastic Navier-Stokes equations in unbounded domains, Journal of Differential Equations, 2011, 251(12), 3329-3362. doi: 10.1016/j.jde.2011.07.029 |
[34] | B. Xie, Stochastic differential equations with non-Lipschitz coefficients in Hilbert spaces, Stoch. Anal. Appl., 2008, 26(2), 408-433. doi: 10.1080/07362990701420100 |