Citation: | Yongjun Li, Valery G. Romanovski. INTEGRABILITY AND LIMIT CYCLES OF A SYMMETRIC 3-DIM QUADRATIC SYSTEM[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2230-2244. doi: 10.11948/20200162 |
We study periodic solutions and first integrals in a three-dimensional quadratic system of ODEs. Coefficient conditions for existence of centers on center manifolds are obtained. Some bounds of the number of limit cycles bifurcating from the centers under small perturbations are given.
[1] | J. C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, Geometric Configurations of Singularities of Planar Polynomial Differential Systems. A Global Classification in the Quadratic Case, Birkhäuser, 2021. |
[2] | W. Aziz, Integrability and linearizability problems of three dimensional Lotka-Volterra equations of rank-2, Qual. Theory Dyn. Syst., 2019, 18, 1113-1134. doi: 10.1007/s12346-019-00329-5 |
[3] | W. Aziz and C. Christopher, Local integrability and linearizability of three-dimensional Lotka-Volterra systems, Appl. Math. Comput., 2012, 219, 4067-4081. |
[4] | Y. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, Vol. 702, Springer-Verlag, New York, 1979. |
[5] | V. I. Bulgakov and A. A. Grin, On a bifurcation of a non-rough focus of a third-order autonomous system, Differ. Uravn., 1996, 32, 1703 (in Russian); Differ. Equ., 1996, 32, 1697-1698 (English translation). |
[6] | L. Cairó and J. Llibre, Darboux integrability for 3D Lotka-Volterra systems, J. Phys. A Math. Gen., 2000, 33, 2395-2406. doi: 10.1088/0305-4470/33/12/307 |
[7] | C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 1999. |
[8] | D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 1992. |
[9] | C. Du, Y. Liu and W. Huang, A Class of Three-Dimensional Quadratic Systems with Ten Limit Cycles, Int. J. Bifur. Chaos, 2016, 26(9), 1650149 (11 pages). doi: 10.1142/S0218127416501492 |
[10] | W. Decker, G. M. Greuel, G. Pfister and H. Shönemann, Singular (4-1-2--A Computer Algebra System for Polynomial Computations, 2019, http://www.singular.uni-kl.de). |
[11] | W. Decker, S. Laplagne, G. Pfister and H. Schonemann, SINGULAR (3-1 library for computing the prime decomposition and radical of ideals, primdec.lib), 2010. |
[12] | M. Dukarić, R. Oliveira and V. G. Romanovski, Local integrability and linearizability of a (1:-1:-1) resonant quadratic system. J. Dyn. Differ. Equ., 2017, 29, 597-613. |
[13] | V. Edneral, A. Mahdi, V. G. Romanovski, and D. S. Shafer. The center problem on a center manifold in $ {\mathbb{R}}^3$, Nonlinear Analysis A, 2012, 75, 2614-2622. doi: 10.1016/j.na.2011.11.006 |
[14] | I. García, S. Maza and D. S. Shafer, Center cyclicity of Lorenz, Chen and Lü systems, Nonlinear Analysis, 2019, 188, 362-376. doi: 10.1016/j.na.2019.06.012 |
[15] | P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomials, J. Symbolic Comput., 1988, 6, 146-167. |
[16] | L. Guo, P. Yu and Y. Chen, Twelve limit cycles in 3D quadratic vector fields with $Z_3$ symmetry, Int. J. Bifur. Chaos, 2018, 28(11), 1850139. doi: 10.1142/S0218127418501390 |
[17] | L. Guo, P. Yu and Y. Chen, Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles, Appl. Math. Comput., 2019, 363, 124577. |
[18] | Z. Hu, M. Han and V. G. Romanovski, Local integrability of a family of three-dimensional quadratic systems. Physica D, 2013, 265, 78-86. |
[19] | H. Li, F. Li and P. Yu, Bi-center Problem in a Class of $Z_2$-yequivariant Quintic Vector Fields, Journal of Nonlinear Modeling and Analysis, 2020, 2(1), 57-78. |
[20] | K. E. Malkin. Conditions for the center for a class of differential equations. (Russian) Izv. Vysš. Učebn. Zaved. Matematika, 1966, 50, 104-114. |
[21] | V. A. Pliss, A Reduction Principle in the Theory of Stability of Motion, Izv. Akad. Nauk SSSR, Ser. Mat., 1964, 28, 1297-1324. |
[22] | V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston-Basel-Berlin, 2009. |
[23] | P. Wang, M. J. T. Guy, and J. H. Davenport. P-adic reconstruction of rational numbers. ACM SIGSAM Bull., 1982, 16, 2-3. |
[24] | Y. Xia, M. Grašič, W. Huang and V. G. Romanovski, Limit cycles in a model of olfactory sensory neurons, Int. J. Bifurcat. Chaos, 2019, 29(3), 1950038 (9 pages). |