2021 Volume 11 Issue 5
Article Contents

Yongjun Li, Valery G. Romanovski. INTEGRABILITY AND LIMIT CYCLES OF A SYMMETRIC 3-DIM QUADRATIC SYSTEM[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2230-2244. doi: 10.11948/20200162
Citation: Yongjun Li, Valery G. Romanovski. INTEGRABILITY AND LIMIT CYCLES OF A SYMMETRIC 3-DIM QUADRATIC SYSTEM[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2230-2244. doi: 10.11948/20200162

INTEGRABILITY AND LIMIT CYCLES OF A SYMMETRIC 3-DIM QUADRATIC SYSTEM

  • Corresponding authors: li_liyong120@163.com(Y. Li);  valerij.romanovskij@um.si(V. G. Ro manovski)
  • Fund Project: The first author is supported by the National Natural Science Foundation of China(11761044). The second author acknowledges the support of the work by the Slovenian Research Agency (program P1-0306, project N1-0063)
  • We study periodic solutions and first integrals in a three-dimensional quadratic system of ODEs. Coefficient conditions for existence of centers on center manifolds are obtained. Some bounds of the number of limit cycles bifurcating from the centers under small perturbations are given.

    MSC: 37G15, 37J15, 37J35
  • 加载中
  • [1] J. C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, Geometric Configurations of Singularities of Planar Polynomial Differential Systems. A Global Classification in the Quadratic Case, Birkhäuser, 2021.

    Google Scholar

    [2] W. Aziz, Integrability and linearizability problems of three dimensional Lotka-Volterra equations of rank-2, Qual. Theory Dyn. Syst., 2019, 18, 1113-1134. doi: 10.1007/s12346-019-00329-5

    CrossRef Google Scholar

    [3] W. Aziz and C. Christopher, Local integrability and linearizability of three-dimensional Lotka-Volterra systems, Appl. Math. Comput., 2012, 219, 4067-4081.

    Google Scholar

    [4] Y. N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, Vol. 702, Springer-Verlag, New York, 1979.

    Google Scholar

    [5] V. I. Bulgakov and A. A. Grin, On a bifurcation of a non-rough focus of a third-order autonomous system, Differ. Uravn., 1996, 32, 1703 (in Russian); Differ. Equ., 1996, 32, 1697-1698 (English translation).

    Google Scholar

    [6] L. Cairó and J. Llibre, Darboux integrability for 3D Lotka-Volterra systems, J. Phys. A Math. Gen., 2000, 33, 2395-2406. doi: 10.1088/0305-4470/33/12/307

    CrossRef Google Scholar

    [7] C. Chicone, Ordinary Differential Equations with Applications, Springer-Verlag, New York, 1999.

    Google Scholar

    [8] D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 1992.

    Google Scholar

    [9] C. Du, Y. Liu and W. Huang, A Class of Three-Dimensional Quadratic Systems with Ten Limit Cycles, Int. J. Bifur. Chaos, 2016, 26(9), 1650149 (11 pages). doi: 10.1142/S0218127416501492

    CrossRef Google Scholar

    [10] W. Decker, G. M. Greuel, G. Pfister and H. Shönemann, Singular (4-1-2--A Computer Algebra System for Polynomial Computations, 2019, http://www.singular.uni-kl.de).

    Google Scholar

    [11] W. Decker, S. Laplagne, G. Pfister and H. Schonemann, SINGULAR (3-1 library for computing the prime decomposition and radical of ideals, primdec.lib), 2010.

    Google Scholar

    [12] M. Dukarić, R. Oliveira and V. G. Romanovski, Local integrability and linearizability of a (1:-1:-1) resonant quadratic system. J. Dyn. Differ. Equ., 2017, 29, 597-613.

    Google Scholar

    [13] V. Edneral, A. Mahdi, V. G. Romanovski, and D. S. Shafer. The center problem on a center manifold in $ {\mathbb{R}}^3$, Nonlinear Analysis A, 2012, 75, 2614-2622. doi: 10.1016/j.na.2011.11.006

    CrossRef Google Scholar

    [14] I. García, S. Maza and D. S. Shafer, Center cyclicity of Lorenz, Chen and Lü systems, Nonlinear Analysis, 2019, 188, 362-376. doi: 10.1016/j.na.2019.06.012

    CrossRef Google Scholar

    [15] P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomials, J. Symbolic Comput., 1988, 6, 146-167.

    Google Scholar

    [16] L. Guo, P. Yu and Y. Chen, Twelve limit cycles in 3D quadratic vector fields with $Z_3$ symmetry, Int. J. Bifur. Chaos, 2018, 28(11), 1850139. doi: 10.1142/S0218127418501390

    CrossRef Google Scholar

    [17] L. Guo, P. Yu and Y. Chen, Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles, Appl. Math. Comput., 2019, 363, 124577.

    Google Scholar

    [18] Z. Hu, M. Han and V. G. Romanovski, Local integrability of a family of three-dimensional quadratic systems. Physica D, 2013, 265, 78-86.

    Google Scholar

    [19] H. Li, F. Li and P. Yu, Bi-center Problem in a Class of $Z_2$-yequivariant Quintic Vector Fields, Journal of Nonlinear Modeling and Analysis, 2020, 2(1), 57-78.

    Google Scholar

    [20] K. E. Malkin. Conditions for the center for a class of differential equations. (Russian) Izv. Vysš. Učebn. Zaved. Matematika, 1966, 50, 104-114.

    Google Scholar

    [21] V. A. Pliss, A Reduction Principle in the Theory of Stability of Motion, Izv. Akad. Nauk SSSR, Ser. Mat., 1964, 28, 1297-1324.

    Google Scholar

    [22] V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston-Basel-Berlin, 2009.

    Google Scholar

    [23] P. Wang, M. J. T. Guy, and J. H. Davenport. P-adic reconstruction of rational numbers. ACM SIGSAM Bull., 1982, 16, 2-3.

    Google Scholar

    [24] Y. Xia, M. Grašič, W. Huang and V. G. Romanovski, Limit cycles in a model of olfactory sensory neurons, Int. J. Bifurcat. Chaos, 2019, 29(3), 1950038 (9 pages).

    Google Scholar

Article Metrics

Article views(2896) PDF downloads(511) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint