Citation: | Yan Sun. EXISTENCE RESULTS OF A SCHROɄINGER EQUATION INVOLVING A NONLINEAR OPERATOR[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1802-1810. doi: 10.11948/20200207 |
In this article, by making use of a completely different approach, i. e. monotone operator theory and analysis techniques, we present the existence of positive solutions for a nonlinear Schroɤinger equations in a unique way under reasonable conditions. Moreover, illustrative examples are also presented.
[1] | R. P. Agarwal, On fourth order boundary value problem arising in beam analysis, Differential and Integral Equation, 1993, 180, 93-108. |
[2] | R. Avery and J. Henderson, Three symmetric positive solutions for second-order boundary value problem, Appl. Math. Lett. 2000, 13, 1-7. |
[3] | D. Covei, Large and entire large solution for a quasilinear problems, Nonlinear Anal. 2009, 70, 1738-1745. doi: 10.1016/j.na.2008.02.057 |
[4] | D. Covei, Radial and nonradial solutions for a semilinear elliptic system of Schrödinger type, Funkcial. Ekvac., 2011, 54, 439-449. doi: 10.1619/fesi.54.439 |
[5] | D. Covei, Non-existence results for radially symmetric solution to the Lane-Emden-Fowler equations, Nonlinear Anal., 2009, 70, 563-566. doi: 10.1016/j.na.2007.12.013 |
[6] | D. Covei, Existence and uniqueness of solution for the Lane, Emden and Fowler type problems, Nonlinear Anal., 2010, 72, 2684-2693. doi: 10.1016/j.na.2009.11.014 |
[7] | D. R. Dunninger and H. Wang, Multiplicity of positive radial solutions for elliptic systems on an annulus, Nonlinear Anal., 2000, 42, 803-811. doi: 10.1016/S0362-546X(99)00125-X |
[8] | D. R. Dunninger, On some uniqueness theorem for nonlinear boundary problem, J. Math. Anal. Appl., 1968, 24, 446-459. doi: 10.1016/0022-247X(68)90043-7 |
[9] | D. R. Dunninger and E. C. Zachmanoglou, The condition for uniqueness of solution of the Dirichlet problems for the wave equation in coordinate rectangle, J. Math. Anal. Appl., 1967, 20, 17-21. doi: 10.1016/0022-247X(67)90103-5 |
[10] | A. Fink and J. Gatica, Positive solutions of second order systems of boundary value problems, J. Math. Anal. Appl., 1989, 2, 91-110. |
[11] | H. Gu and T. An, Existence of periodic solution for a class of second-order discrete Hamiltonian system, J. Difference Equ. Appl., 2015, 21, 197-208. doi: 10.1080/10236198.2014.993322 |
[12] | H. Gu and T. An, Existence of infinitely many periodic solutions for secondorder Hamiltonian system, Electron J. Diff. Eqs., 2013, 251, 1-10. |
[13] | D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Aca-demic Press, New York, 1988. |
[14] | M. João, L. Sebastiaxn and U. Pedro, Local superlinearity for elliptic systems involving parameters, J. Diff. Eqs. 2005, 211, 1-19. doi: 10.1016/j.jde.2004.04.013 |
[15] | W. Kelley and A. Peterson, Difference equations, An introduction with applications, Second edition, Harcourt/Academic Press, SanDiego, 2001. |
[16] | Y. Lee, Multiplicity of positive radial solutions for multiparameter semilinear elliptic system on an annulus, J. Diff. Eqs., 2001, 174, 420-441. doi: 10.1006/jdeq.2000.3915 |
[17] | Y. Li, Existence of positive solutions for the cantilever beam equation with fully nonlinear terms, Nonlinear Anal., 2016, 27, 221-237. doi: 10.1016/j.nonrwa.2015.07.016 |
[18] | Y. Li, Positive solutions for second order boundary value problem with derivative terms, Math. Nachr., 2016, 289, 2058-2068. doi: 10.1002/mana.201500040 |
[19] | Y. Li, Q. Liu and C. Xie, Semilinear reaction-diffusion system of several com-ponents, J. Diff. Eqs. 2003, 187, 510-519. doi: 10.1016/S0022-0396(02)00075-X |
[20] | X. Li, Z. Han and X. Li, Boundary value problems of fractional q-difference Schrödinger equations, Appl. Math. Lett., 2015, 46, 100-105. doi: 10.1016/j.aml.2015.02.013 |
[21] | H. Lü, H. Yu and Y. Liu, Positive solutions for singular boundary value problems of a coupled system of differential equations, J. Math. Anal. Appl., 2005, 302, 14-29. v doi: 10.1016/j.jmaa.2004.08.003 |
[22] | D. Lü, Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations, Commun. Pure Appl. Anal., 2016, 15, 1781-1795. doi: 10.3934/cpaa.2016014 |
[23] | W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic system via moving spheres, J. Diff. Eqs., 2000, 161, 219-243. doi: 10.1006/jdeq.1999.3700 |
[24] | Y. Sun, Necessary and sufficient condition for the existence of positive solution of a coupled system for elastic beam equations, J. Math. Anal. Appl., 2009, 357, 77-88. doi: 10.1016/j.jmaa.2009.04.001 |
[25] | Y. Sun, L. Liu and Y. Wu, The existence and uniqueness of positive monotone solution for a class of nonlinear Schrödinger equations on infinite domains, J. Comput. Appl. Math., 2017, 321, 478-486. doi: 10.1016/j.cam.2017.02.036 |
[26] | S. Tao and Z. Zhang, On the existence of explosive solutions for semilinear elliptic problem, Nonlinear Anal., 2002, 48, 1043-1050. doi: 10.1016/S0362-546X(00)00233-9 |
[27] | W. C. Troy, Symmetry properties in system of semilinear elliptic equations, J. Diff. Eqs. 1981, 42, 400-413. doi: 10.1016/0022-0396(81)90113-3 |
[28] | G. Wang, Twin iterative positive solutions of fractional q-difference Schrödinger equation, Appl. Math. Lett., 2018, 76, 103-109. doi: 10.1016/j.aml.2017.08.008 |
[29] | Q. Yao, Positive solutions of nonlinear elastic beam equations rigidly fastened on the left and simply supported on the right, Nonlinear Anal., 2008, 69, 1570-1580. doi: 10.1016/j.na.2007.07.002 |
[30] | X. Zhang, Y. Wu and Y. Cui, Existence and nonexisyence of blow-up solutions for Schrödinger equation involving a nonlinear operator, Appl. Math. Lett., 2018, 82, 85-91. doi: 10.1016/j.aml.2018.02.019 |
[31] | Z. Zhang, A remark on the existence of explosive solutions for a class of semilinear elliptic equations, Nonlinear Anal., 2000, 41, 143-148. doi: 10.1016/S0362-546X(98)00270-3 |
[32] | H. Zou, A priori estimates for semilinear elliptic system without variational structure and their applications, Math. Ann., 2002, 323, 713-735. doi: 10.1007/s002080200324 |
[33] | S. Zheng, Nonexistence of positive solution to semilinear elliptic systems and blow-up estimates for a reaction-diffusion system, J. Math. Anal. Appl., 1999, 232, 293-311. doi: 10.1006/jmaa.1999.6273 |