Citation: | Ahmed AL-Taweel, Saqib Hussain, Xiaoshen Wang. SUPERCLOSENESS ANALYSIS OF STABILIZER FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1963-1981. doi: 10.11948/20200298 |
Recently, a stabilizer free weak Galerkin (SFWG) method is proposed in [
[1] | A. Al-Taweel and X. Wang, A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method, Applied Numerical Mathematics, 2020, 150, 444-451. doi: 10.1016/j.apnum.2019.10.009 |
[2] | A. Al-Taweel and X. Wang, The lowest-order stabilizer free Weak Galerkin Finite Element Methods, Applied Numerical Mathematics, 2020, 157, 434-445. doi: 10.1016/j.apnum.2020.06.012 |
[3] | A. Al-Taweel, S. Hussain and X. Wang, A stabilizer free weak Galerkin finite element method for parabolic equation, Journal of Computational and Applied Mathematics, 2021, 113373. |
[4] | A. Al-Taweel, S. Hussain, R. Lin and P. Zhu, A stabilizer free weak Galerkin finite element method for general second-order elliptic problem, International Journal of Numerical Analysis and Modeling, 2021 (to appear). |
[5] | A. Al-Taweel, X. Wang, X. Ye and S. Zhang, A stabilizer free weak Galerkin element method with supercloseness of order two, arXiv: 2004.11192v1, 2020. |
[6] | M. Cheichan, H. Kashkool and F. Gao, A weak Galerkin finite element method for solving nonlinear convection-diffusion problems in two dimensions, International Journal of Applied and Computational Mathematics, 2019, 5(2), 36. doi: 10.1007/s40819-019-0621-3 |
[7] | M. Cheichan, H. Kashkool and F. Gao, A weak Galerkin finite element method for solving nonlinear convection-diffusion problems in two dimensions, Journal of Mathematics and Computation, 2019, 354, 149-163. doi: 10.1016/j.amc.2019.02.043 |
[8] | B. Deka, P. Roy and N. Kumar, Weak Galerkin finite element method combined with Crank-Nicolson scheme for Parabolic interface problems, Journal of Applied Analysis and Computation, 2020, 10(4), 1433-1442. doi: 10.11948/20190218 |
[9] | F. Gao, S. Zhang and P. Zhu, Modified weak Galerkin method with weakly imposed boundary condition for convection-dominated diffusion equations, Journal of Applied Numerical Mathematics, 2020, 157, 490-504. doi: 10.1016/j.apnum.2020.07.010 |
[10] | R. Lin, X. Ye, S. Zhang and P. Zhu, A Weak Galerkin Finite Element Method for Singularly Perturbed Convection-Diffusion-Reaction Problems, SIAM Journal on Numerical Analysis, 2018, 56(3), 1482-1497. doi: 10.1137/17M1152528 |
[11] | R. Lin, X. Ye, S. Zhang and P. Zhu, Analysis Of A DG Method For Singularly Perturbed Convection- Diffusion Problems, Journal of Applied Analysis and Computation, 2020, 10(3), 830-841. doi: 10.11948/20180164 |
[12] | H. G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, in: Convection–Diffusion–Reaction and Flow Problems, second edition, in: Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 2008. |
[13] | J. Wang and X. Ye, A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp. 2014, 83, 2101-2126. doi: 10.1090/S0025-5718-2014-02852-4 |
[14] | X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, Journal of Computational and Applied Mathematics. 2020, 372, 112699. |
[15] | X. Ye and S. Zhang, A stabilizer-free pressure-robust finite element method for the Stokes equations, arXiv: 2006.11853, 2020. |
[16] | P. Zhu and X. Wang, A Least Square Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form, Acta Mathematica Scientia, 2020, 40, 1553-1562. doi: 10.1007/s10473-020-0521-y |