2021 Volume 11 Issue 4
Article Contents

Xiaoming Yang, Guo Lin, Jianing Yang. ASYMPTOTIC SPREADING IN A COMPETITION SYSTEM WITH NONLOCAL DISPERSAL[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1951-1962. doi: 10.11948/20200290
Citation: Xiaoming Yang, Guo Lin, Jianing Yang. ASYMPTOTIC SPREADING IN A COMPETITION SYSTEM WITH NONLOCAL DISPERSAL[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1951-1962. doi: 10.11948/20200290

ASYMPTOTIC SPREADING IN A COMPETITION SYSTEM WITH NONLOCAL DISPERSAL

  • Corresponding author: Email: ling@lzu.edu.cn(G. Lin)
  • Fund Project: Research was partially supported by NSF of China (Nos. 11731005, 11971213) and Fundamental Research Funds for the Central Universities (lzujbky-2020- 11)
  • This paper is concerned with the long time behavior of a competition system with nonlocal dispersal. When the initial conditions of both unknown functions satisfy proper decay behavior, we obtain the rough spreading speed of one unknown function and show the upper and lower bounds of spreading speed of another unknown function. Moreover, a numerical example is given to illustrate our analytic results. Our conclusions imply that both the linear part and nonlinear part in reaction terms may affect the spreading speeds. Moreover, in such a competitive system with constant coefficients, we may observe the propagation terraces in some component.

  • 加载中
  • [1] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In: Partial Differential Equations and Related Topics, (Edited by J.A. Goldstein), Lecture Notes in Mathematics, Springer, Berlin, 1975,446, 5-49.

    Google Scholar

    [2] X. Bao, W. Li and W. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential. Equations., 2016,260(12), 8590-8637. doi: 10.1016/j.jde.2016.02.032

    CrossRef Google Scholar

    [3] X. Bao, W. Shen and Z. Shen, Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems, Commun. Pure Appl. Anal., 2019, 18(1), 361-396. doi: 10.3934/cpaa.2019019

    CrossRef Google Scholar

    [4] P. W. Bates, On some nonlocal evolution equations arising in materials science, Fields Inst. Commun, AMS, Providence, 2006, 48, 13-52.

    Google Scholar

    [5] N. F. Britton, Reaction-diffusion equations and their applications to biology, Academic Press, London, 1986.

    Google Scholar

    [6] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Boca, 2003.

    Google Scholar

    [7] L. Du, W. Li and S. Wu, Pulsating fronts and front-like entire solutions for a reaction-advection-diffusion competition model in a periodic habitat, J. Differential. Equations., 2019,266(12), 8419-8458. doi: 10.1016/j.jde.2018.12.029

    CrossRef Google Scholar

    [8] A. Ducrot, T. Giletti and H. Matano, Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations, Trans. Amer. Math. Soc., 2014,366(10), 5541-5566. doi: 10.1090/S0002-9947-2014-06105-9

    CrossRef Google Scholar

    [9] J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 2014, 46(6), 3678-3704. doi: 10.1137/140953939

    CrossRef Google Scholar

    [10] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, In: Trends in Nonlinear Analysis (Ed. by M. Kirkilionis, S. Kr$\ddot{o}$mker, R. Rannacher, F. Tomi), pp. 153-191, Springer, Berlin, 2003.

    Google Scholar

    [11] L. Girardin and K. Y. Lam, Invasion of open space by two competitors: spreading properties of monostable two-species competition-diffusion systems, Proc. Lond. Math. Soc., 2019,119(5), 1279-1335. doi: 10.1112/plms.12270

    CrossRef Google Scholar

    [12] G. Hetzer, T. Nguyen and W. Shen, Coexistence and extinction in the Lotka-Volterra competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 2013, 11(5), 1699-1722.

    Google Scholar

    [13] Y. Jin and X. Zhao, Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 2009, 22(5), 1167-1189. doi: 10.1088/0951-7715/22/5/011

    CrossRef Google Scholar

    [14] M. A. Lewis, S. V. Petrovskii and J. R. Sergei, The mathematics behind biological invasions, Interdisciplinary Applied Mathematics, 44, Springer, Cham, 2016.

    Google Scholar

    [15] W. Li, L. Zhang and G. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 2015, 35(4), 1531-1560. doi: 10.3934/dcds.2015.35.1531

    CrossRef Google Scholar

    [16] X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 2006, 60(1), 1-40.

    Google Scholar

    [17] G. Lin and W. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions, Euro. J. Appl. Math., 2012, 23(6), 669-689. doi: 10.1017/S0956792512000198

    CrossRef Google Scholar

    [18] R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci., 1989, 93(2), 269-295. doi: 10.1016/0025-5564(89)90026-6

    CrossRef Google Scholar

    [19] J. D. Murray, Mathematical Biology: I. An Introduction, Third edition, Springer-Verlag, New York, 2002.

    Google Scholar

    [20] J. D. Murray, Mathematical Biology: â…¡. Spatial Models and Biomedical Applications, Third edition, Springer-Verlag, New York, 2003.

    Google Scholar

    [21] S. Pan, Traveling wave solutions in nonlocal dispersal models with nonlocal delays, J. Korean Math. Soc., 2014, 51(4), 703-719. doi: 10.4134/JKMS.2014.51.4.703

    CrossRef Google Scholar

    [22] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997.

    Google Scholar

    [23] M. Tang and P. Fife, Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 1980, 73(1), 69-77. doi: 10.1007/BF00283257

    CrossRef Google Scholar

    [24] H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 2002, 45(3), 183-218. doi: 10.1007/s002850200145

    CrossRef Google Scholar

    [25] Z. Yu and R. Yuan, Travelling wave solutions in nonlocal reaction-diffusion systems with delays and applications, ANZIAM J., 2009, 51(1), 49-66. doi: 10.1017/S1446181109000406

    CrossRef Google Scholar

    [26] G. Zhang and X. Zhao, Propagation phenomena for a two-species Lotka-Volterra strong competition system with nonlocal dispersal, Calc. Var. Partial Differential Equations, 2020, 59(10), 34. doi: 10.1007/s00526-019-1662-5

    CrossRef Google Scholar

Figures(6)  /  Tables(2)

Article Metrics

Article views(2641) PDF downloads(378) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint