Citation: | Guofengc Che, Haibo Chen. GROUND STATE SIGN–CHANGING SOLUTIONS FOR FRACTIONAL KIRCHHOFF TYPE EQUATIONS IN $ \mathbb{R}^{3} $[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 2017-2036. doi: 10.11948/20200307 |
In this paper, we investigate the existence of ground state sign–changing solutions for the following fractional Kirchhoff equation
$ \left(a+b\int_{\mathbb{R}^{3}}|\left(-\triangle\right)^{\frac{\alpha}{2}}u|^{2}\mathrm{d}x\right) (-\triangle)^{\alpha}u+V(x)u = K(x)f(u) \rm{ \ \ in }\mathbb{R}^{3}, $
where $ \alpha\in (0, 1) $, $ a, b $ are positive parameters, $ V(x), \; K(x) $ are nonnegative continuous functions and $ f $ is a continuous function with quasicritical growth. By establishing a new inequality, we prove the above system possesses a ground state sign–changing solutions $ u_{b} $ with precisely two nodal domains, and its energy is strictly larger than twice that of the ground state solutions of Nehari–type. Moreover, we obtain the convergence property of $ u_{b} $ as the parameter $ b\rightarrow0 $. Our conditions weaken the usual increasing condition on $ f(t)/|t|^{3} $.
[1] | C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations, 2013, 254, 1977-1991. doi: 10.1016/j.jde.2012.11.013 |
[2] | C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 2014, 65, 1153-1166. doi: 10.1007/s00033-013-0376-3 |
[3] | A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 2005, 7, 117-144. |
[4] | V. Ambrosio, G. M. Figueiredo, T. Isernia and G. Molica Bisci, Sign-changing solutions for a class of zero mass nonlocal Schrödinger equations, Adv. Nonlinear Stud., 2019, 19, 113-132. doi: 10.1515/ans-2018-2023 |
[5] | V. Ambrosio and T. Isernia, Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation, Math. Meth. Appl. Sci., 2018, 41, 615-645. |
[6] | V. Ambrosio and T. Isernia, Sign-changing solutions for a class of Schrödinger equations with vanishing potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 2018, 29, 127-152. doi: 10.4171/RLM/797 |
[7] |
V. Ambrosion and T. Isernia, A multiplicity result for a fractional Kirchhoff equation in $ {{\mathbb{R}}.{N}} $ with a general nonlinearity, Commum. Contemp. Math., 2018, 20, 1750054. doi: 10.1142/S0219199717500547
CrossRef $ {{\mathbb{R}}.{N}} $ with a general nonlinearity" target="_blank">Google Scholar |
[8] | A. Ambrosetti and Z. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differ. Integral Equ., 2005, 18, 1321-1332. |
[9] |
G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $ {{\mathbb{R}}.{N}} $, J. Differential Equations, 2013, 255, 2340-2362. doi: 10.1016/j.jde.2013.06.016
CrossRef $ {{\mathbb{R}}.{N}} $" target="_blank">Google Scholar |
[10] | T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math, 2005, 96, 1-18. doi: 10.1007/BF02787822 |
[11] | H. Berestycki and P. Lions, Nonlinear scalar field equations. I. Existence of a ground state state, Arch. Ration. Mech. Anal., 1983, 82, 313-345. doi: 10.1007/BF00250555 |
[12] | L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Equat., 2007, 32, 1245-1260. doi: 10.1080/03605300600987306 |
[13] | D. Cassani, Z. Liu, C. Tarsi and J. Zhang, Multiplicity of sign-changing solutions for Kirchhoff-type equations, Nonlinear Anal., 2019, 186, 145-161. doi: 10.1016/j.na.2019.01.025 |
[14] | G. Che and H. Chen, Existence and multiplicity of positive solutions for Kirchhoff-Schrödinger-Poisson system with critical growth, Rev. Real Acad. Cienc. Exactas F., 2020, 114, 78. |
[15] | G. Che and H. Chen, Existence and concentration result for Kirchhoff equations with critical exponent and Hartree nonlinearity, J. Appl. Anal. Comput., 2020, 10, 2121-2144. |
[16] | G. Che, H. Chen, H. Shi and Z. Wang, Existence of nontrivial solutions for fractional Schrödinger-Poisson system with sign-changing potentials, Math. Meth. Appl. Sci., 2018, 41, 5050-5064. doi: 10.1002/mma.4951 |
[17] | G. Che, H. Chen and T.F. Wu, Existence and multiplicity of positive solutions for fractional Laplacian systems with nonlinear coupling, J. Math. Phys., 2019, 60, 081511. doi: 10.1063/1.5087755 |
[18] | G. Che and T.F. Wu, Three positive solutions for Kirchhoff problems with steep potential well and concave-convex nonlinearities, Appl. Math. Lett., 2021, 121, 107348. doi: 10.1016/j.aml.2021.107348 |
[19] |
S. Chen and X. Tang, Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $ {{\mathbb{R}}.{3}} $, Z. Angew. Math. Phys., 2016, 67, 1-18. doi: 10.1007/s00033-015-0604-0
CrossRef $ {{\mathbb{R}}.{3}} $" target="_blank">Google Scholar |
[20] |
Y. Deng, S. Peng and W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff type problema in $ {{\mathbb{R}}.{3}} $, J. Funct. Anal., 2015, 269, 3500-3527. doi: 10.1016/j.jfa.2015.09.012
CrossRef $ {{\mathbb{R}}.{3}} $" target="_blank">Google Scholar |
[21] | G. M. Figueiredo, M. B. Guimarães and R. d. S. Rodrigues, Solutions for a Kirchhoff equation with weight and nonlinearity with subcritical and critical Caffarelli-Kohn-Nirenberg growth, Proc. Edinburgh Math. Soc., 2016, 59, 925-944. doi: 10.1017/S0013091515000395 |
[22] | R. L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., 2016, 69, 1671-1726. doi: 10.1002/cpa.21591 |
[23] | T. Isernia, Sign-changing solutions for a fractional Kirchhoff equation, Nonlinear Anal., 2020, 190, 111623. doi: 10.1016/j.na.2019.111623 |
[24] | T. Isernia, Fractional p & q-Laplacian problems with potentials vanishing at infinity, Opuscula Math., 2020, 40, 93-110. doi: 10.7494/OpMath.2020.40.1.93 |
[25] | G. Kirchhoff, Mechanik, Teubner, 1883. |
[26] |
S. Khoutir and H. Chen, Existence of infinitely many high energy solutions for a fractional Schrödinger equation in $ {{\mathbb{R}}.{N}} $, Appl. Math. Lett., 2016, 61, 156-162. doi: 10.1016/j.aml.2016.06.001
CrossRef $ {{\mathbb{R}}.{N}} $" target="_blank">Google Scholar |
[27] | N. Laskin, Fractional Schrödinger equation, Phy. Rev. E., 2002, 66, 05618. |
[28] | Z. Liu, M. Squassina and J. Zhang, Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimensions, NODEA-Nonlinear Differ. Equ. Ap., 2017, 24, 1-32. doi: 10.1007/s00030-016-0424-8 |
[29] | W. Long, S. Peng and J. Yang, Infinitely positive and sign-changing solutions for nonlinear fractional scalar field equations, Discrete Contin. Dyn. Syst., 2015, 36, 917-939. doi: 10.3934/dcds.2016.36.917 |
[30] | D. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., 2014, 99, 35-48. doi: 10.1016/j.na.2013.12.022 |
[31] |
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $ {{\mathbb{R}}.{N}} $, J. Math. Phys., 2013, 54, 031501. doi: 10.1063/1.4793990
CrossRef $ {{\mathbb{R}}.{N}} $" target="_blank">Google Scholar |
[32] | H. Shi and H. Chen, Multiple solutions for fractional Schrödinger equation, Electron. J. Differ. Equ., 25 (2015) 1-11. |
[33] | W. Shuai, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differential Equations, 2015, 259, 1256-1274. doi: 10.1016/j.jde.2015.02.040 |
[34] | Y. Su and H. Chen, Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent, Comput. Math. Appl., 2019, 78, 2063-2082. doi: 10.1016/j.camwa.2019.03.052 |
[35] | J. Sun and T. Wu, Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 2014, 256, 1771-1792. doi: 10.1016/j.jde.2013.12.006 |
[36] |
J. Sun, Y. Cheng, T. Wu and Z. Feng, Positive solutions of a superlinear Kirchhoff type equation in $ {{\mathbb{R}}.{N}}\left( N\ge 4 \right) $, Commun. Nonlinear Sci. Numer. Simulat., 2019, 71, 141-160. doi: 10.1016/j.cnsns.2018.11.002
CrossRef $ {{\mathbb{R}}.{N}}\left( N\ge 4 \right) $" target="_blank">Google Scholar |
[37] | J. Sun and T. Wu, Steep potential well may help Kirchhoff type equations to generate multiple solutions, Nonlinear Anal., 2020, 190, 111609. doi: 10.1016/j.na.2019.111609 |
[38] | X. Tang, Non-Nehari manifold method for superlinear Schrödinger equation, Taiwanese J. Math., 2014, 18, 1950-1972. |
[39] | X. Tang and B. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differential Equations, 2016, 261, 2384-2402. doi: 10.1016/j.jde.2016.04.032 |
[40] | K. Teng and X. He, Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent, Commun. Pure Appl. Anal., 2016, 15, 991-1008. doi: 10.3934/cpaa.2016.15.991 |
[41] | K. Teng, K. Wang and R. Wang, A sign-changing solution for nonlinear problems involving the fractional laplacian, Electron. J. Differ. Equ., 2015, 2015, 1-12. doi: 10.1186/s13662-014-0331-4 |
[42] |
Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $ {{\mathbb{R}}.{3}} $, Calc. Var. Partial Diff. Equ., 2015, 52, 927-943. doi: 10.1007/s00526-014-0738-5
CrossRef $ {{\mathbb{R}}.{3}} $" target="_blank">Google Scholar |
[43] | Z. Wang and H. Zhou, Radial sign-changing solution for fractional Schrödinger equation, Discrete Contin. Dyn. Syst., 2016, 36, 499-508. |
[44] | M. Willem, Minimax Theorems, Birkhäuser, Berlin, 1996. |
[45] | Q. Xie, Bounded state solution of degenerate Kirchhoff type problem with a critical exponent, J. Math. Anal. Appl., 2019, 479, 1-24. doi: 10.1016/j.jmaa.2019.06.013 |
[46] | J. Zhang, Z. Liu and M. Squassina, Modulational stability of ground states to nonlinear Kirchhoff equations, J. Math. Anal. Appl., 2019, 477, 844-859. doi: 10.1016/j.jmaa.2019.04.067 |
[47] | J. Zhang and W. Zou, A Berestycki-Lions theorem revisted, Commun. Contemp. Math., 2012, 14, 1250033. doi: 10.1142/S0219199712500332 |