Citation: | Jing Fu, XiaoLing Hao, Kun Li, Siqin Yao. DISCONTINUOUS FRACTIONAL STURM-LIOUVILLE PROBLEMS WITH EIGEN-DEPENDENT BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 2037-2051. doi: 10.11948/20200308 |
In this paper, a fractional discontinuous Sturm-Liouville type boun-dary-value problem with eigenparameter-dependent boundary conditions and with two fractional transmission conditions is investigated. Using operator theory, a new inner product is defined by combining the parameters in the boundary and transmission conditions, then the boundary value transmission problem is transferred to an operator in a new Hilbert space such that the eigenvalues and eigenfunctions of the main problem coincide with those of this operator. Moreover, the fundamental solutions are constructed, and then the characteristic function whose zeros are the eigenvalues of the problem is established.
[1] | Z. Akdoğan, M. Demirci and O. Sh. Mukhtarov, Discontinuous Sturm-Liouville problem with eigen parameter-dependent boundary and transmission conditions, Acta Applicandae Mathematica, 2005, 86, 329-344. doi: 10.1007/s10440-004-7466-3 |
[2] | Z. Akdoğan, M. Demirci and O. Sh. Mukhtarov, Sturm-Liouville problem with eigen dependent boundary and transmissions conditions, Acta Mathematica Scientia, 2005, 25B(4), 731-740. |
[3] | K. Aydemir1 and O. Sh. Mukhtarov, Variational principles for spectral analysis of one Sturm-Liouville problem with transmission conditions, Advances in Difference Equations, 2016, 2016, 1-14. doi: 10.1186/s13662-016-0800-z |
[4] | Q. M. Al-Mdallal, On the numerical solution of fractional Sturm-Liouville problem, International Journal Computer Mathematics., 2010, 87, 183-189. |
[5] | Z. Akdoğan, A. Yakar and M. Demirci, Discontinuous fractional Sturm-Liouville problems with transmission conditions, Applied Mathematics and Computation, 2019, 350, 1-10. |
[6] | D. Baleanu and E. Uğurlu, Regular fractional dissipative boundary value problems, Advances in Difference Equation, 2016, 2016, 1-6. doi: 10.1186/s13662-016-0883-6 |
[7] | M. Dehghan and A. B. Mingarelli, Fractional Sturm-Liouville eigenvalue problems, I, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales-Serie A: Matematicas, 2020, 114, 46. |
[8] | C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1977, 77A, 293-308. |
[9] | A. A. Kilbass, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Netherlands, Amsterdam, 2006. |
[10] | J. Li and J. Qi, Note on a nonlocal SturmšCLiouville problem with both right and left fractional derivatives, Applied Mathematics Letters, 2019, 97, 14-19. doi: 10.1016/j.aml.2019.05.011 |
[11] | J. Li and J. Qi, Eigenvalue problems for fractional differential equations with right and left fractional derivatives, Applied Mathematics and Computation, 2015, 256, 1-10. doi: 10.1016/j.amc.2014.12.146 |
[12] | O. Sh. Mukhtarov, Discontinuous boundary-value problem with spectral parameter in boundary conditions, Turkish Journal of Mathematics. 1994, 18, 183-192. |
[13] | O. Sh. Mukhtarov and K. Aydemir, Minimization principle and generalized Fourier series for discontinuous Sturm-Liouville systems in direct sum spaces, Journal of Applied Analysis and Computation, 2018, 8(5), 1511-1523. doi: 10.11948/2018.1511 |
[14] | O. Sh. Mukhtarov and K. Aydemir, Eigenfunction expansion for Sturm-Liouville problems with transmission conditions at one interior point, Acta Mathematica Scientia, 2015, 35(3), 639-649. doi: 10.1016/S0252-9602(15)30010-2 |
[15] | R. L. Magin, Fractional calculus in bioengineering, Begell House Incorporated, Redding, CT, 2004, 32, dol: 10.1615/CritRevBiomedEng. v32. i1.10. |
[16] | M. A. Naimark, Linear Differential Operators, English Transl, New York, 1968. |
[17] | M. A. Naimark, Linear Differential Operators Part Ⅱ, London, 1968. |
[18] | H. Olğar and O. Sh. Mukhtarov, Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions, Journal of Mathematical Physics, 2017, 58(4), 042201-1-042201-13. |
[19] | I. Podlubny, Fractional Differential Equations, Academic Press, London, 1999. |
[20] | J. Qi and S. Chen, Eigenvalue problems of the model from nonlocal continuum mechanics, Journal of Mathematical Physics, 2011, 52(7), 537-546. |
[21] | M. Rivero, J. J. Trujillo and M. P. Velasco, A fractional approach to the Sturm-Liouville problem, Central European Journal of Physics, 2013, 11, 1246-1254. doi: 10.2478/s11534-013-0216-2 |
[22] | B. J. West, M. Bologna and P. Grigolini, Physics of fractal operators, Springer Verlag, New York, 2003. |
[23] | A. Yakar and Z. Akdoğan, On the fundamental solutions of a discontinuous fractional boundary boundary value problem, Advances in Difference Equations, 2017, 2017, doi: 10.1186/s13662-017-1433-6. |
[24] | A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2005. |
[25] | M. Zayernouri and G. E. Karniadakis, Fractional Sturm Liouville eigen-problems: theory and numerical approximation, Journal of Computational Physics, 2013, 252, 495-517. doi: 10.1016/j.jcp.2013.06.031 |