2021 Volume 11 Issue 5
Article Contents

Zhenfeng Shi, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. ANALYSIS OF A MULTI-GROUP ALCOHOLISM MODEL WITH PUBLIC HEALTH EDUCATION UNDER REGIME SWITCHING[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2279-2302. doi: 10.11948/20200370
Citation: Zhenfeng Shi, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. ANALYSIS OF A MULTI-GROUP ALCOHOLISM MODEL WITH PUBLIC HEALTH EDUCATION UNDER REGIME SWITCHING[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2279-2302. doi: 10.11948/20200370

ANALYSIS OF A MULTI-GROUP ALCOHOLISM MODEL WITH PUBLIC HEALTH EDUCATION UNDER REGIME SWITCHING

  • In this paper, we study a multi-group stochastic alcoholism model with public health education, which is formulated as a piecewise deterministic Markov process. Through a rigorous analysis, we firstly show that the solution of the stochastic model is positive and global. Then we obtain sufficient conditions for the extinction of alcohol problems. In addition, sufficient conditions for the persistence in the mean of alcoholism are derived. Specifically, in the case of persistence, we prove the existence of positive recurrence of the solution to the model by employing suitable stochastic Lyapunov functions.

    MSC: 34F05, 37Hxx, 60Jxx, 92Bxx
  • 加载中
  • [1] B. Benedict, Modelling alcoholism as a contagious disease: how "infected" drinking buddies spread problem drinking, SIAM News., 2007, 40(3), 1-3.

    Google Scholar

    [2] R. Bani, R. Hameed, S. Szymanowski, P. Greenwood, C. Kribs-Zaleta and A. Mubayi, Influence of environmental factors on college alcohol drinking patterns, Math. Biosci. Eng., 2013, 10(5), 1281-1300.

    Google Scholar

    [3] C. P. Bhunu and S. Mushayabasa, A theoretical analysis of smoking and alcoholism, J. Math. Model. Algor., 2012, 11(2), 387-408.

    Google Scholar

    [4] R. J. Bonnie and M. E. O'Connell, Reducing Underage Drinking: A Collective Responsibility, The National Academies Press, Washington, DC, 2004.

    Google Scholar

    [5] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.

    Google Scholar

    [6] N. Dang, N. Du and G. Yin, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise, J. Diff. Eqs., 2014, 257(6), 2078-2101. doi: 10.1016/j.jde.2014.05.029

    CrossRef Google Scholar

    [7] Z. Feng, W. Huang and C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Diff. Eqs., 2005, 218(2), 292-324. doi: 10.1016/j.jde.2004.10.009

    CrossRef Google Scholar

    [8] D. M. Gorman, J. Mezic, I. Mezic and P. J. Gruenewald, Agent-based modeling of drinking behavior: a preliminary model and potential applications to theory and practice, Am. J. Public Health., 2006, 96(11), 2055-2060. doi: 10.2105/AJPH.2005.063289

    CrossRef Google Scholar

    [9] S. Galea, C. Hall and G. A. Kaplan, Social epidemiology and complex system dynamic modelling as applied to health behaviour and drug use research, Int. J. Drug Policy., 2009, 20(3), 209-216. doi: 10.1016/j.drugpo.2008.08.005

    CrossRef Google Scholar

    [10] A. Gray, D. Greenhalgh, X. Mao and J. Pan, The SIS epidemic model with Markovian switching, J. Math. Anal. Appl., 2012, 394(2), 496-516. doi: 10.1016/j.jmaa.2012.05.029

    CrossRef Google Scholar

    [11] H. Guo, M. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 2006, 14(3), 259-284.

    Google Scholar

    [12] H. Guo, M. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Amer. Math. Soc., 2008, 136(8), 2793-2802. doi: 10.1090/S0002-9939-08-09341-6

    CrossRef Google Scholar

    [13] H. Guo, M. Li and Z. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 2012, 72(1), 261-279. doi: 10.1137/110827028

    CrossRef Google Scholar

    [14] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [15] C. Ji, D. Jiang and N. Shi, Multigroup SIR epidemic model with stochastic perturbation, Physica A, 2011, 390(10), 1747-1762. doi: 10.1016/j.physa.2010.12.042

    CrossRef Google Scholar

    [16] T. Kuniya, Global Behavior of a Multi-Group SIR Epidemic Model with Age Structure and an Application to the Chlamydia Epidemic in Japan, SIAM J. Appl. Math., 2019, 79(1), 321-340. doi: 10.1137/18M1205947

    CrossRef Google Scholar

    [17] D. Kuang, Q. Yin and J. Li, Stationary distribution and extinction of stochastic HTLV-I infection model with CTL immune response under regime switching, J. Nonl. Mod. Anal., 2020, 2, 585-600.

    Google Scholar

    [18] M. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, J. Math. Anal. Appl., 2010, 361(1), 38-47. doi: 10.1016/j.jmaa.2009.09.017

    CrossRef Google Scholar

    [19] Q. Liu, D. Jiang and N. Shi, Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching, Appl. Math. Comput., 2018, 316, 310-325.

    Google Scholar

    [20] J. Lv, H. Liu and X. Zou, Stationary distribution and persistence of a stochastic predator-prey model with a functional response, J. Appl. Anal. Comput., 2019, 9(1), 1-11.

    Google Scholar

    [21] M. Li, Z. Jin and G. Sun, Modeling direct and indirect disease transmission using multi-group model, J. Math. Anal. Appl., 2017, 446(2), 1292-1309. doi: 10.1016/j.jmaa.2016.09.043

    CrossRef Google Scholar

    [22] D. Li, S. Liu and J. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, J. Diff. Eqs., 2017, 263(12), 8873-8915. doi: 10.1016/j.jde.2017.08.066

    CrossRef Google Scholar

    [23] D. Li, S. Liu and J. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching, J. Diff. Eqs., 2019, 266(7), 3973-4017. doi: 10.1016/j.jde.2018.09.026

    CrossRef Google Scholar

    [24] Q. Liu and D. Jiang, Dynamics of a multigroup SIS epidemic model with standard incidence rates and Markovian switching, Physica A, 2019, 527, 121270. doi: 10.1016/j.physa.2019.121270

    CrossRef Google Scholar

    [25] Q. Luo and X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 2007, 334(1), 69-84. doi: 10.1016/j.jmaa.2006.12.032

    CrossRef Google Scholar

    [26] X. Mao and C. Yuan, Stochastic Differential Equations With Markovian Switching, Imperial College Press, London, 2006.

    Google Scholar

    [27] X. Mao, Stability of stochastic differential equations with Markovian switching, Stoch. Process. Their Appl., 1999, 79(1), 45-67. doi: 10.1016/S0304-4149(98)00070-2

    CrossRef Google Scholar

    [28] J. L. Manthey, A. Y. Aidoo and K. Y. Ward, Campus drinking: an epidemiological model, J. Biol. Dyn., 2008, 2(3), 346-356. doi: 10.1080/17513750801911169

    CrossRef Google Scholar

    [29] G. Mulone and B. Straughan, Modeling binge drinking, Int. J. Biomath., 2012, 5(1), 1250005. doi: 10.1142/S1793524511001453

    CrossRef Google Scholar

    [30] A. Mubayi and P. E. Greenwood, Contextual interventions for controlling alcohol drinking, Math. Popul. Stud., 2013, 20(1), 27-53. doi: 10.1080/08898480.2013.748588

    CrossRef Google Scholar

    [31] S. Ma, H. Huo and H. Xiang, Threshold dynamics of a multi-group SEAR alcoholism model with public health education, Int. J. Biomath., 2019, 12(3), 1950025. doi: 10.1142/S1793524519500256

    CrossRef Google Scholar

    [32] X. Meng, L. Wang and T. Zhang, Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment, J. Appl. Anal. Comput., 2016, 6(3), 865-875.

    Google Scholar

    [33] S. Nolen-Hoeksema, Gender differences in risk factors and consequences for alcohol use and problems, Clin. Psychol. Rev., 2004, 24(8), 981-1010. doi: 10.1016/j.cpr.2004.08.003

    CrossRef Google Scholar

    [34] H. Peng and X. Zhang, The dynamics of stochastic predator-prey models with non-constant mortality rate and general nonlinear functional response, J. Nonl. Mod. Anal., 2020, 2, 495-511.

    Google Scholar

    [35] H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal.-Real World Appl., 2012, 13(4), 1581-1592. doi: 10.1016/j.nonrwa.2011.11.016

    CrossRef Google Scholar

    [36] H. Song, J. Wang and W. Jiang, Global dynamics in a multi-group epidemic model for disease with latency spreading and nonlinear transmission rate, J. Appl. Anal. Comput., 2016, 6(1), 47-64.

    Google Scholar

    [37] A. Settati and A. Lahrouz, Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 2014, 244, 235-243.

    Google Scholar

    [38] Y. Takeuchi, N. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 2006, 323, 938-957. doi: 10.1016/j.jmaa.2005.11.009

    CrossRef Google Scholar

    [39] M. Ventura-Cots et al., Colder weather and fewer sunlight hours increase alcohol consumption and alcoholic cirrhosis worldwide, Hepatology, 2018, 69(5), 1916-1930.

    Google Scholar

    [40] L. Wang and D. Jiang, Ergodic property of the chemostat: A stochastic model under regime switching and with general response function, Nonlinear Anal.-Hybrid Syst., 2018, 27, 341-352. doi: 10.1016/j.nahs.2017.10.001

    CrossRef Google Scholar

    [41] X. Wang, Q. Yang and H. Huo, The asymptotic behaviors of a stochastic social epidemic model with multi-perturbation, J. Appl. Anal. Comput., 2018, 8(1), 272-295. DOI: 10.11948/2018.272.

    CrossRef Google Scholar

    [42] X. Wang, P. Zhang and Q. Yang, On the stochastic dynamics of a social epidemics model, Dyn. Nat. Soc., 2017, 6297074. DOI: 10.1155/2017/6297074.

    CrossRef Google Scholar

    [43] World Health Organization, Global status report on alcohol and health, Geneva, 2018.

    Google Scholar

    [44] Q. Yang and X. Mao, Extinction and recurrence of multi-group SEIR epidemic models with stochastic perturbations, Nonlinear Anal.-Real World Appl., 2013, 14(3), 1434-1456. doi: 10.1016/j.nonrwa.2012.10.007

    CrossRef Google Scholar

    [45] X. Zhang, D. Jiang, A. Ahmed and T. Hayat, Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 2016, 59, 87-93. doi: 10.1016/j.aml.2016.03.010

    CrossRef Google Scholar

Figures(4)  /  Tables(1)

Article Metrics

Article views(3898) PDF downloads(386) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint