2021 Volume 11 Issue 6
Article Contents

Qiaoxin Li, Boling Guo, Ming Zeng. SMOOTH SOLUTIONS OF THE LANDAU-LIFSHITZ-BLOCH EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2713-2721. doi: 10.11948/20200376
Citation: Qiaoxin Li, Boling Guo, Ming Zeng. SMOOTH SOLUTIONS OF THE LANDAU-LIFSHITZ-BLOCH EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2713-2721. doi: 10.11948/20200376

SMOOTH SOLUTIONS OF THE LANDAU-LIFSHITZ-BLOCH EQUATION

  • Corresponding author: Email: liqiaoxin@126.com(Q. Li) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (NSFC-11801552)
  • Landau-Lifshitz-Bloch equation is often used to model micromagnetic phenomenon under high temperature. This article proves the existence of smooth solutions of the equation in $ \mathbb{R}^2$ and $ \mathbb{R}^3$, and a small initial value condition should be added in the latter case. These results can also be generalized to periodical boundary value case.

    MSC: 35B35, 35Q55
  • 加载中
  • [1] I. Bejenaru, A. D. Ionescu, C. E. Kenig and D. Tartaru. Global Schrodinger maps in dimensions d ≤ 2: small data in the critical Sobolev spaces, Annals Math., 2011, 173, 1443-1506. doi: 10.4007/annals.2011.173.3.5

    CrossRef Google Scholar

    [2] A. Berti and C. Giorgi, Derivation of the Landau-Lifshitz-Bloch equation from continuum thermodynamics, Phys. B., 2016, 500, 142-153. doi: 10.1016/j.physb.2016.07.035

    CrossRef Google Scholar

    [3] T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Annals of Mathematics, 2019, 189, 101-144. doi: 10.4007/annals.2019.189.1.3

    CrossRef Google Scholar

    [4] N. Chang, J. Shatah and K. Uhlanbeck, Schrodinger maps, Comm. Pure Appl. Math., 2000, 53(5), 590-602. doi: 10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R

    CrossRef Google Scholar

    [5] D. A. Garamin, Generalized equation of motion for a ferromaganet, Phys. A., 1991, 172, 470-491. doi: 10.1016/0378-4371(91)90395-S

    CrossRef Google Scholar

    [6] D. A. Garamin, Dynamices of elliptiv domain wall, Phys, A., 1991, 178, 467-492. doi: 10.1016/0378-4371(91)90033-9

    CrossRef Google Scholar

    [7] D. A. Garamin, Forker-Planck and Landau-Lifshitz-Bloch equations for classical ferromagnets, Phys. Rev. B., 1997, 55, 3060-3057.

    Google Scholar

    [8] B. Guo and Y. Han, Global smooth solution of Hydrodynamical equation for the Heisenberg paremagnet, Math. Meth. Appl. Sci., 2004, 181-191.

    Google Scholar

    [9] B. Guo and S. Ding, Landau-Lifshitz equations, World Scientific Publishing, Hackensack, NJ., 2008.

    Google Scholar

    [10] K. Ngan Le, Weak solutions of the Landau-Lifshitz-Bloch equation, Journal of Differential Equation, 2016, 261, 6699-6717. doi: 10.1016/j.jde.2016.09.002

    CrossRef Google Scholar

    [11] B. Li and M. Han, Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations, Journal of Applied Analysis and Computation, 2020, 10(4), 1708-1719. doi: 10.11948/20200139

    CrossRef Google Scholar

    [12] Z. Li, Q. Li, P. He, J. Liang, W. Liu and G. Fu, Domain-wall solutions of spinor Bose-Einstein condensates in an optical lattice, Physical Review A., 2010, 81, 015602. doi: 10.1103/PhysRevA.81.015602

    CrossRef Google Scholar

    [13] J. Liang and J. Li, Bifurcations and exact solutions of nonlinear Schrodinger equation with an anti-cubic nonlinearity, Journal of Applied Analysis and Com- putation, 2018, 8, 1194-1210.

    Google Scholar

    [14] R. Liu, H. Liu and J. Xin, Attractor for the non-autonomous long wave-short wave resonance interaction equation with damping, Journal of Applied Analysis and Computation, 2020, 10(3), 1149-1169. doi: 10.11948/20190246

    CrossRef Google Scholar

    [15] J. Wang and L. Tian, Boundary controllability for the time-fractional nonlinear korteweg-de vries (KDV) equation, Journal of Applied Analysis and Computation, 2020, 10(2), 411-426. doi: 10.11948/20180018

    CrossRef Google Scholar

    [16] S. Wu, Laplace inversion for the solution of an abstract heat equation without the forward transform of the source term, Journal of Numerical Mathematics, 2017, 25(3), 185-198.

    Google Scholar

    [17] T. Tao and L. Zhang, On the continous periodic weak solutions of Boussinesq equations, SIAM J. Math. Anal., 2018, 50(1), 1120-1162. doi: 10.1137/17M1115526

    CrossRef Google Scholar

Article Metrics

Article views(2792) PDF downloads(533) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint