Citation: | Hong Lu, Linlin Wang, Lijun Zhang, Mingji Zhang. LIMITING DYNAMICS OF NON-AUTONOMOUS STOCHASTIC GINZBURG-LANDAU EQUATIONS ON THIN DOMAINS[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2313-2333. doi: 10.11948/20200378 |
We examine the limiting dynamics of a class of non-autonomous stochastic Ginzburg-Landau equations driven by multiplicative noise and deterministic non-autonomous terms defined on thin domains. The existence and uniqueness of tempered pullback random attractors are established for the stochastic Ginzburg-Landau systems defined on $ (n+1) $-dimensional narrow domain. In addition, the upper semicontinuity of these attractors is obtained when a family of $ (n+1) $-dimensional thin domains collapses onto an $ n $-dimensional domain.
[1] | F. Antoci and M. Prizzi, Reaction-diffusion equations on unbounded thin domains, Topol. Methods Nonlinear Anal., 2001, 18, 283-302. doi: 10.12775/TMNA.2001.035 |
[2] | I. S. Aranson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 2002, 74, 99-143. doi: 10.1103/RevModPhys.74.99 |
[3] | L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. |
[4] | J. Arrieta, A. Carvalho, M. Pereira and R. P. Da Silva, Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., 2011, 74, 5111-5132. doi: 10.1016/j.na.2011.05.006 |
[5] | M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Physica D, 1990, 44, 421-444. doi: 10.1016/0167-2789(90)90156-J |
[6] | S. Becker and A. Jentzen, Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations, Stochastic Process and their Applications, 2019, 129, 28-69. doi: 10.1016/j.spa.2018.02.008 |
[7] | I. Ciuperca, Reaction-diffusion equations on thin domains with varying order of thinness, J. Differ. Equ., 1996, 126, 244-291. doi: 10.1006/jdeq.1996.0051 |
[8] | C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D, 1994, 71, 285-318. doi: 10.1016/0167-2789(94)90150-3 |
[9] | J. K. Hale and G. Raugel, Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 1992, 71, 33-95. |
[10] | J. K. Hale and G. Raugel, A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A., 1995, 125, 283-327. doi: 10.1017/S0308210500028043 |
[11] | M. Hoshino, Y. Inahama and N. Naganuma, Stochastic complex Ginzburg-Landau equation with space-time white noise, Electronic J. Probability, 2017, 22, 1-68. |
[12] | D. Li, K. Lu, B. Wang and X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domain, Discrete Contin. Dyn. Syst. A., 2019, 39, 3717-3747. doi: 10.3934/dcds.2019151 |
[13] | D. Li, B. Wang and X. Wang, Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differ. Equ., 2017, 262, 1575-1602. doi: 10.1016/j.jde.2016.10.024 |
[14] | D. Li and X. Wang, Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains, Discrete Contin. Dyn. Syst. Ser. B., 2019, 24, 449-465. |
[15] | F. Li and B. You, Global attractors for the complex Ginzburg-Landau equation, J. Mathe. Anal. Appl., 2011, 415, 14-24. |
[16] | S. Lv and Q. Lu, Exponential attractor for the 3D Ginzburg-Landau type equation, Nonlinear Anal: Theory, Methods and Applications, 2007, 67, 3116-3135. doi: 10.1016/j.na.2006.10.005 |
[17] | Y. Lv and J. Sun, Asymptotic behavior of stochastic discrete complex Ginzburg-Landau equations, Physica D: Nonlinear Phenomena, 2006, 221, 157-169. doi: 10.1016/j.physd.2006.07.023 |
[18] | Y. Morita, Stable solutions to the Ginzburg-Landau equation with magnetic effect in a thin domain, Jpn. J. Ind. Appl. Math., 2004, 21, 129-147. doi: 10.1007/BF03167468 |
[19] | M. Prizzi and K. P. Rybakowski, Recent results on thin domain problems, Ⅱ, Topol. Methods Nonlinear Anal., 2002, 19, 199-219. doi: 10.12775/TMNA.2002.010 |
[20] | M. Prizzi and K. P. Rybakowski, The effect of domain squeezing upon the dynamics of reaction-diffusion equations, J. Differ. Equ., 2001, 237, 271-320. |
[21] | G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 1993, 6, 503-568. |
[22] | L. Shi, R. Wang, K. Lu and B. Wang, Asymptotic behavior of stochastic Fitzhugh-Nagumo Systems on unbounded thin domain, J. Differ. Equ., 2019, 7, 4373-4409. |
[23] | D. Shimotsuma, T. Yokota and K. Yoshii, Existence and decay estimates of solutions to complex Ginzburg-Landau type equations, J. Differ. Equ., 2016, 260, 3119-3149. doi: 10.1016/j.jde.2015.10.030 |
[24] | B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equ., 2012, 253, 1544-1583. doi: 10.1016/j.jde.2012.05.015 |
[25] | B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 2014, 34, 269-300. doi: 10.3934/dcds.2014.34.269 |
[26] | G. Wang, B. Guo and Y. Li, The asymptotic behavior of the stochastic Ginzburg-Landau equation with additive noise, Appl. Math. Comput., 2008, 198, 849-857. |
[27] | C. Zhao and S. Zhou, Limit behavior of global attractors for the complex Ginzburg-Landau equation on infinite lattices, Appl. Math. Lett., 2008, 21, 628-635. doi: 10.1016/j.aml.2007.07.016 |
[28] | Q. Zhang, Random attractors for a Ginzburg-Landau equation with additive noise, Chaos, Solitons and Fractals, 2009, 39, 463-472. doi: 10.1016/j.chaos.2007.03.001 |