Citation: | Ke Jin, Zifei Shen. SEMICLASSICAL SOLUTIONS OF THE CHOQUARD EQUATIONS IN $\mathbb{R}$3[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 568-586. doi: 10.11948/20200388 |
We study the nonlocal equation:
$ - {\varepsilon ^2}\Delta u + \lambda u + V(x)u = {\varepsilon ^{ - 2}}\left( {|x{|^{ - 1}} * |u{|^p}} \right)|u{|^{p - 2}}u\quad {\rm{ in }}\ {\mathbb{R}^3}, $
where ε > 0 is a small parameter, λ > 0, 0 < p < ∞ are positive constants and u is a real-valued measurable function. By Lyapunov–Schmidt reduction, we will prove the existence of multiple semiclassical solutions.
[1] | A. Ambrosetti, M. Badiale, S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal., 1997, 140, 285–300. doi: 10.1007/s002050050067 |
[2] | W. Ao, J. Wei, J. Zeng, An optimal bound on the number of interior peak solutions for the Lin-Ni-Takagi problem, J. Funct. Anal., 2013, 265(7) 1324–1356. doi: 10.1016/j.jfa.2013.06.016 |
[3] | D. Cassani, J. Van Schaftingen, J. Zhang, Groundstates for Choquard type equations with Hardy–Littlewood–Sobolev lower critical exponent, Proceedings of the Royal Society of Edinburgh, 2017. DOI: 10.1017/prm.2018.135 |
[4] | G. Chen, Nondegeneracy of ground states and semiclassical solutions of the Hartree equation for general dimensions, arXiv: 1610.05503. |
[5] | S. Chen, X. Tang, J. Wei, Nehari-type ground state solutions for a Choquard equation with doubly critical exponents, Adv. Nonlinear Anal., 2021, 10(1) 152–171. |
[6] | Z. Cheng, M. Yang, Stability of standing waves for a generalized Choquard equation with potential, Acta Appl. Math., 2018, 157(1), 25–44. doi: 10.1007/s10440-018-0162-5 |
[7] | S. Cingolani, S. Secchi, Semiclassical analysis for pseudo-relativistic Hartree equations, J. Differential Equations, 2015, 258(12), 4156–4179. doi: 10.1016/j.jde.2015.01.029 |
[8] | L. Du, M. Yang, Uniqueness and nondegeneracy of solutions for a critical nonlocal equation, Discrete and Continuous Dynamical Systems, 2019, 39(10), 5847–5866. doi: 10.3934/dcds.2019219 |
[9] | J. Giacomoni, Y. Wei, M. Yang, Nondegeneracy of solutions for a critical Hartree equation, Nonlinear Analysis, 2020, 199, 111969. doi: 10.1016/j.na.2020.111969 |
[10] | L. Guo, T. Hu, Multi-bump solutions for nonlinear Choquard equation with potential wells and a general nonlinearity, Acta Mathematica Scientia, 2020, 40(2), 316–340. doi: 10.1007/s10473-020-0202-x |
[11] | R. Harrison, I. Moroz, K. P. Tod, A numerical study of the Schrödinger–Newton equations, Nonlinearity, 2003, 16(1), 101–122. doi: 10.1088/0951-7715/16/1/307 |
[12] | E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 1977 57(2), 93–105. doi: 10.1002/sapm197757293 |
[13] | Y. Li, G. Li, C. Tang, Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well, Nonlinear Analysis, 2020, 200, 111997. doi: 10.1016/j.na.2020.111997 |
[14] | C. Lin, S. Peng, Segregated vector solutions for linearly coupled nonlinear Schrödinger systems, Indiana Univ. Math. J., 2014, 63(4), 939–967. doi: 10.1512/iumj.2014.63.5310 |
[15] | F. Lin, W. Ni, J. Wei, On the number of interior peak solutions for singularly perturbered Neumann problem, Comm. Pure Appl. Math., 2007, 60(2), 252– 281. doi: 10.1002/cpa.20139 |
[16] | L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 2010, 195(2), 455–467. doi: 10.1007/s00205-008-0208-3 |
[17] | V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 2013, 265(2), 153–184. doi: 10.1016/j.jfa.2013.04.007 |
[18] | V. Moroz, J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 2015, 52(1), 199–235. |
[19] | S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954. |
[20] | R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 1996, 28(5) 581–600. doi: 10.1007/BF02105068 |
[21] | M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math., 1949 81(1) 1–223. |
[22] | S. Secchi, A note on Schrödinger–Newton systems with decaying electric potential, Nonlinear Analysis, 2010, 72(9–10), 3842–3856. doi: 10.1016/j.na.2010.01.021 |
[23] | L. Wang, Number of synchronized and segregated interior spike solutions for nonlinear coupled elliptic systems with continuous potentials, Science ChinaMath., 2019, 62(3), 509–534. |
[24] | J. Wei, M. Winter, Strongly interacting bumps for the Schrödinger–Newton equations, Journal of Mathematical Physics, 2009, 50(1), 012905. doi: 10.1063/1.3060169 |
[25] | C. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differential Equations, 2016, 55(6), 134–158. doi: 10.1007/s00526-016-1068-6 |
[26] | H. Zhang, J. Xu, F. Zhang, Existence and multiplicity of solutions for a generalized Choquard equation, Computers and Mathematics with Applications, 2017, 73(8), 1803–1814. doi: 10.1016/j.camwa.2017.02.026 |
[27] | H. Zhang, F. Zhang, Infinitely many radial and nonradial solutions for a Choquard equation with general nonlinearity, Applied Mathematics Letters, 2020, 102, 106142. doi: 10.1016/j.aml.2019.106142 |
[28] | J. Zhang, C. Lei, L. Guo, Positive solutions for a nonlocal Schrödinger–Newton system involving critical nonlinearity, Computers and Mathematics with Applications, 2018, 76(8), 1966–1974. doi: 10.1016/j.camwa.2018.07.042 |