2021 Volume 11 Issue 1
Article Contents

Peng Chen, Zhijie Cao, Sitong Chen, Xianhua Tang. GROUND STATES FOR A FRACTIONAL REACTION-DIFFUSION SYSTEM[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 556-567. doi: 10.11948/20200349
Citation: Peng Chen, Zhijie Cao, Sitong Chen, Xianhua Tang. GROUND STATES FOR A FRACTIONAL REACTION-DIFFUSION SYSTEM[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 556-567. doi: 10.11948/20200349

GROUND STATES FOR A FRACTIONAL REACTION-DIFFUSION SYSTEM

  • In this paper, we prove the existence of the ground state of a strongly indefinite fractional reaction-diffusion system based on the Non-Nehari method established by Tang-Chen-Lin-Yu [J. Differ. Equ., 2020(268), 4663-4690]. In particular, neither any monotonicity condition nor any Ambrosetti-Rabinowitz growth condition is required. To our knowledge, this is the first result about the ground states with the strongly indefinite case for fractional reaction-diffusion system.
    MSC: 37J45, 58E05, 70H05
  • 加载中
  • [1] A. Ahmed, Bashir. Ahmad and K. Mokhtar, Global existence and large time behavior of solutions of a time behavior of solutions of a time fractional reaction diffusion system, Frac. Calc. Appl. Anal., 2020, 23(2), 390–407. doi: 10.1515/fca-2020-0019

    CrossRef Google Scholar

    [2] T. Bartsch and Y. Ding, Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z., 2002, 240, 289–310. doi: 10.1007/s002090100383

    CrossRef Google Scholar

    [3] G. M. Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 2016.

    Google Scholar

    [4] S. Chen, A. Fiscella and P. Pucci, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ., 2020, 268 (6), 2672–2716.

    Google Scholar

    [5] P. Clment, P. Felmer and E. Mitidieri, Homoclinic orbits for a class of infinite dimensional Hamiltonian systems, Ann. Sc. Norm. Super. Pisa, 1997, 24, 367– 393.

    Google Scholar

    [6] D. G. De Figueiredo and Y. Ding, Strongly indefinite functions and multiple solutions of elliptic systems, Trans. Amer. Math. Soc., 2003, 355 2973–2989. doi: 10.1090/S0002-9947-03-03257-4

    CrossRef Google Scholar

    [7] D. G. De Figueiredo and P. L. Felmer, On superquadiatic elliptic systems, Trans. Amer. Math. Soc., 1994, 343, 97–116.

    Google Scholar

    [8] Y. Ding, S. Luan and M. Willem, Solutions of a system of diffusion equations, J. Fixed Point Theory Appl., 2007, 2, 117–139. doi: 10.1007/s11784-007-0023-8

    CrossRef Google Scholar

    [9] Y. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008.

    Google Scholar

    [10] Y. Ding and T. Xu, Effect of external potentials in a coupled system of multicomponent incongruent diffusion, Topol. Method. Nonl. Anal., 2019, 54, 715–750.

    Google Scholar

    [11] Y. Ding and T. Xu, Concentrating patterns of reaction-diffusion systems: a variational approach, Trans. Amer. Math. Soc., 2017, 369, 97–138.

    Google Scholar

    [12] Y. Ding and Q. Guo, Homoclinic solutions for an anomalous diffusion system, J. Math. Anal. Appl., 2018, 46, 860–879.

    Google Scholar

    [13] L. Juan, The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion, Lecture Notes in Mathematics, 2017, 2186, 205–278.

    Google Scholar

    [14] W. Kryszewski and A. Szulkin, An infinite dimensional morse theorem with applications, Trans. Amer. Math. Soc., 1997, 349, 3184–3234.

    Google Scholar

    [15] G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 2002, 4, 763–776. doi: 10.1142/S0219199702000853

    CrossRef Google Scholar

    [16] L. Lions, Contrôe optimal de systèmes gouvernés par deséquations aux dérivées particlles, Dunod and Gauthier-Villars, Paris, 1968.

    Google Scholar

    [17] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 2005, 73, 259–287. doi: 10.1007/s00032-005-0047-8

    CrossRef Google Scholar

    [18] M. Saad and J. Gomez, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Physica A., 2018, 509, 703–716. doi: 10.1016/j.physa.2018.05.137

    CrossRef Google Scholar

    [19] P. Santoro, J. de Paula, E. Lenzi and L. Evangelista, Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell, J. Chem. Phys., 2011, 135(11), 114704. doi: 10.1063/1.3637944

    CrossRef Google Scholar

    [20] A. Szulkin and T. Weth, Ground state solutions for some indefinite problems, J. Funct. Anal., 2009, 257(12), 3802–3822. doi: 10.1016/j.jfa.2009.09.013

    CrossRef Google Scholar

    [21] X. Tang, S. Chen, X. Lin and J. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differ. Equ., 2020, 268(8), 4663–4690. doi: 10.1016/j.jde.2019.10.041

    CrossRef Google Scholar

    [22] X. Tang, Non-Nehari manifold method for superlinear Schrödinger equation, Taiwanese J. Math., 2014, 18(6), 1957–1979. doi: 10.11650/tjm.18.2014.3541

    CrossRef Google Scholar

    [23] X. Tang and S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 2017, 56(4), 110. doi: 10.1007/s00526-017-1214-9

    CrossRef Google Scholar

    [24] J. Wang, J. Xu and F. Zhang, Infinitely many solutions for diffusion equations without symmetry, Nonlinear Anal., 2011, 74(4), 1290–1303. doi: 10.1016/j.na.2010.10.002

    CrossRef Google Scholar

    [25] Y. Wei and M. Yang, Existence of solutions for a system of diffusion equations with spectrum point zero, Z. Angew. Math. Phys., 2014, 65(2) 325–337. doi: 10.1007/s00033-013-0334-0

    CrossRef Google Scholar

    [26] M. Yang, Z. Shen and Y. Ding, On a class of infinite-dimensional Hamiltonian systems with asymptotically periodic nonlinearities, Chinese Ann. Math., 2011, 32(1), 45–58. doi: 10.1007/s11401-010-0625-0

    CrossRef Google Scholar

    [27] M. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 2010, 72(5), 2620–2627. doi: 10.1016/j.na.2009.11.009

    CrossRef Google Scholar

    [28] M. Yang, Nonstationary homoclinic orbits for an infinite-dimensional Hamiltonian system, J. Math. Phys., 2010, 51 (10), 102701. doi: 10.1063/1.3488967

    CrossRef Google Scholar

    [29] J. Zhang, X. Tang and W. Zhang, Ground state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 2014, 95, 1–10. doi: 10.1016/j.na.2013.07.027

    CrossRef Google Scholar

    [30] F. Zhao and Y. Ding, On a diffusion system with bounded potential, Discrete Contin. Dyn. Syst., 2009, 23(3), 1073–1086. doi: 10.3934/dcds.2009.23.1073

    CrossRef Google Scholar

    [31] L. Zhao and F. Zhao, On ground state solutions for superlinear Hamiltonian elliptic systems, Z. Angew. Math. Phys., 2013, 64(3), 403–418. doi: 10.1007/s00033-012-0258-0

    CrossRef Google Scholar

Article Metrics

Article views(2938) PDF downloads(377) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint