[1]
|
A. Ahmed, Bashir. Ahmad and K. Mokhtar, Global existence and large time behavior of solutions of a time behavior of solutions of a time fractional reaction diffusion system, Frac. Calc. Appl. Anal., 2020, 23(2), 390–407. doi: 10.1515/fca-2020-0019
CrossRef Google Scholar
|
[2]
|
T. Bartsch and Y. Ding, Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z., 2002, 240, 289–310. doi: 10.1007/s002090100383
CrossRef Google Scholar
|
[3]
|
G. M. Bisci, V. D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, 2016.
Google Scholar
|
[4]
|
S. Chen, A. Fiscella and P. Pucci, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ., 2020, 268 (6), 2672–2716.
Google Scholar
|
[5]
|
P. Clment, P. Felmer and E. Mitidieri, Homoclinic orbits for a class of infinite dimensional Hamiltonian systems, Ann. Sc. Norm. Super. Pisa, 1997, 24, 367– 393.
Google Scholar
|
[6]
|
D. G. De Figueiredo and Y. Ding, Strongly indefinite functions and multiple solutions of elliptic systems, Trans. Amer. Math. Soc., 2003, 355 2973–2989. doi: 10.1090/S0002-9947-03-03257-4
CrossRef Google Scholar
|
[7]
|
D. G. De Figueiredo and P. L. Felmer, On superquadiatic elliptic systems, Trans. Amer. Math. Soc., 1994, 343, 97–116.
Google Scholar
|
[8]
|
Y. Ding, S. Luan and M. Willem, Solutions of a system of diffusion equations, J. Fixed Point Theory Appl., 2007, 2, 117–139. doi: 10.1007/s11784-007-0023-8
CrossRef Google Scholar
|
[9]
|
Y. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008.
Google Scholar
|
[10]
|
Y. Ding and T. Xu, Effect of external potentials in a coupled system of multicomponent incongruent diffusion, Topol. Method. Nonl. Anal., 2019, 54, 715–750.
Google Scholar
|
[11]
|
Y. Ding and T. Xu, Concentrating patterns of reaction-diffusion systems: a variational approach, Trans. Amer. Math. Soc., 2017, 369, 97–138.
Google Scholar
|
[12]
|
Y. Ding and Q. Guo, Homoclinic solutions for an anomalous diffusion system, J. Math. Anal. Appl., 2018, 46, 860–879.
Google Scholar
|
[13]
|
L. Juan, The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion, Lecture Notes in Mathematics, 2017, 2186, 205–278.
Google Scholar
|
[14]
|
W. Kryszewski and A. Szulkin, An infinite dimensional morse theorem with applications, Trans. Amer. Math. Soc., 1997, 349, 3184–3234.
Google Scholar
|
[15]
|
G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 2002, 4, 763–776. doi: 10.1142/S0219199702000853
CrossRef Google Scholar
|
[16]
|
L. Lions, Contrôe optimal de systèmes gouvernés par deséquations aux dérivées particlles, Dunod and Gauthier-Villars, Paris, 1968.
Google Scholar
|
[17]
|
A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 2005, 73, 259–287. doi: 10.1007/s00032-005-0047-8
CrossRef Google Scholar
|
[18]
|
M. Saad and J. Gomez, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Physica A., 2018, 509, 703–716. doi: 10.1016/j.physa.2018.05.137
CrossRef Google Scholar
|
[19]
|
P. Santoro, J. de Paula, E. Lenzi and L. Evangelista, Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell, J. Chem. Phys., 2011, 135(11), 114704. doi: 10.1063/1.3637944
CrossRef Google Scholar
|
[20]
|
A. Szulkin and T. Weth, Ground state solutions for some indefinite problems, J. Funct. Anal., 2009, 257(12), 3802–3822. doi: 10.1016/j.jfa.2009.09.013
CrossRef Google Scholar
|
[21]
|
X. Tang, S. Chen, X. Lin and J. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions, J. Differ. Equ., 2020, 268(8), 4663–4690. doi: 10.1016/j.jde.2019.10.041
CrossRef Google Scholar
|
[22]
|
X. Tang, Non-Nehari manifold method for superlinear Schrödinger equation, Taiwanese J. Math., 2014, 18(6), 1957–1979. doi: 10.11650/tjm.18.2014.3541
CrossRef Google Scholar
|
[23]
|
X. Tang and S. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations, 2017, 56(4), 110. doi: 10.1007/s00526-017-1214-9
CrossRef Google Scholar
|
[24]
|
J. Wang, J. Xu and F. Zhang, Infinitely many solutions for diffusion equations without symmetry, Nonlinear Anal., 2011, 74(4), 1290–1303. doi: 10.1016/j.na.2010.10.002
CrossRef Google Scholar
|
[25]
|
Y. Wei and M. Yang, Existence of solutions for a system of diffusion equations with spectrum point zero, Z. Angew. Math. Phys., 2014, 65(2) 325–337. doi: 10.1007/s00033-013-0334-0
CrossRef Google Scholar
|
[26]
|
M. Yang, Z. Shen and Y. Ding, On a class of infinite-dimensional Hamiltonian systems with asymptotically periodic nonlinearities, Chinese Ann. Math., 2011, 32(1), 45–58. doi: 10.1007/s11401-010-0625-0
CrossRef Google Scholar
|
[27]
|
M. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 2010, 72(5), 2620–2627. doi: 10.1016/j.na.2009.11.009
CrossRef Google Scholar
|
[28]
|
M. Yang, Nonstationary homoclinic orbits for an infinite-dimensional Hamiltonian system, J. Math. Phys., 2010, 51 (10), 102701. doi: 10.1063/1.3488967
CrossRef Google Scholar
|
[29]
|
J. Zhang, X. Tang and W. Zhang, Ground state solutions for superquadratic Hamiltonian elliptic systems with gradient terms, Nonlinear Anal., 2014, 95, 1–10. doi: 10.1016/j.na.2013.07.027
CrossRef Google Scholar
|
[30]
|
F. Zhao and Y. Ding, On a diffusion system with bounded potential, Discrete Contin. Dyn. Syst., 2009, 23(3), 1073–1086. doi: 10.3934/dcds.2009.23.1073
CrossRef Google Scholar
|
[31]
|
L. Zhao and F. Zhao, On ground state solutions for superlinear Hamiltonian elliptic systems, Z. Angew. Math. Phys., 2013, 64(3), 403–418. doi: 10.1007/s00033-012-0258-0
CrossRef Google Scholar
|