2021 Volume 11 Issue 1
Article Contents

Carlos Raposo, Ducival Pereira, Celsa Maranhão. UNILATERAL PROBLEM FOR A NONLINEAR WAVE EQUATION WITH P-LAPLACIAN OPERATOR[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 546-555. doi: 10.11948/20200147
Citation: Carlos Raposo, Ducival Pereira, Celsa Maranhão. UNILATERAL PROBLEM FOR A NONLINEAR WAVE EQUATION WITH P-LAPLACIAN OPERATOR[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 546-555. doi: 10.11948/20200147

UNILATERAL PROBLEM FOR A NONLINEAR WAVE EQUATION WITH P-LAPLACIAN OPERATOR

  • This work deals with the unilateral problem for a nonlinear wave equation with p-Laplacian operator and source term. Using an appropriate penalization, we obtain a variational inequality for the equation perturbed and then the existence of solutions is analyzed.
    MSC: 35L85, 35A01, 35L80
  • 加载中
  • [1] P. Ballard and S. Basseville, Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem, ESAIM - Math. Model. Num., 2005, 39, 59–77. doi: 10.1051/m2an:2005004

    CrossRef Google Scholar

    [2] L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 2008, 22, 835–860. doi: 10.3934/dcds.2008.22.835

    CrossRef Google Scholar

    [3] H. Brézis, Analyse fonctionnelle: théorie et applications, Dunod, 1999.

    Google Scholar

    [4] A. D. D. Cavalcanti, M. M. Cavalcanti, L. H. Fatori and M. A. Jorge Silva, Unilateral problems for the wave equation with degenerate a nonlocalized nonlinear damping: well-posedness and non-stability results, Math. Nachr., 2018, 291, 1–24. doi: 10.1002/mana.201600413

    CrossRef Google Scholar

    [5] I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solution and global attactors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 2006, 15, 777–809. doi: 10.3934/dcds.2006.15.777

    CrossRef Google Scholar

    [6] M. R. Clark and O. A. Lima, Existence of solutions for a variational unilateral system, Electron. J. Differential Equations, 2002, 22, 1–18. doi: 10.1111/1468-0262.00282

    CrossRef Google Scholar

    [7] A. Domokos and J. J. Manfredi, A second order differentiability technique of Bojarski-Iwaniec in the Heisenberg group, Functiones et Approximation, 2009, 40, 69–74. doi: 10.7169/facm/1238418798

    CrossRef Google Scholar

    [8] M. Dreher, The wave equation for the p-Laplacian, Hokkaido Math. J., 2007, 36, 21–52. doi: 10.14492/hokmj/1285766660

    CrossRef Google Scholar

    [9] H. Gao and T. Ma, Global solutions for a nonlinear wave equation with the p–Laplacian operator, Electron. J. Qual. Theory Differ. Equ., 1999, 11, 1–13.

    Google Scholar

    [10] J. M. Greenberg, R. C. MacCamy and V. J. Vizel, On the existence, uniqueness, and stability of solution of the equation σ(ux)uxx + λuxtx = ρ0utt, J. Math. Mech., 1968, 17, 707–728.

    Google Scholar

    [11] N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, SIAM - Studies in Applied and Numerical Mathematics, Philadelphia, 1988.

    Google Scholar

    [12] N. A. Lar'kin and L. A. Medeiros, On a variational inequality for the equations of the theory of the elasticity, well posed boundary value problem for non classical equation, Novosibrisk, Moscow, 1991, 6–11.

    Google Scholar

    [13] J. L. Lions, Quelques methódes de resolution des probléms aux limites non lineáires, Dunod, Paris, 1969.

    Google Scholar

    [14] T. Ma and J. A. Soriano, On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Anal., 1999, 37, 1029–1038. doi: 10.1016/S0362-546X(97)00714-1

    CrossRef Google Scholar

    [15] L. A. Medeiros and M. M. Milla, Local solutions for a nonlinear unilateral problem, Rev. Roumaine Math. Pures Appl., 1986, XXXI, 371–382. doi: 10.2307/2045678

    CrossRef Google Scholar

    [16] P. Pei, M. A. Rammaha and D. Toundykov, Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources, J. Math. Phys., 56, 2015, Article ID 081503.

    Google Scholar

    [17] D. C. Pereira, H. Hguyen, C. A. Raposo and C. H. M. Maranhão, On the solutions for an extensible beam equation with internal damping and source terms, Differ. Equ. Appl., 2019, 11, 367–377.

    Google Scholar

    [18] C. A. Raposo, D. C. Pereira, G. Araujo and A. Baena, Unilateral problems for the klein-gordon operator with nonlinearity of kirchhoff-carrier type, Electron. J. Differential Equations, 2015, 137, 1–14.

    Google Scholar

    [19] C. A. Raposo, J. O. Ribeiro and A. P. Cattai, Global solution for a thermoelastic system with p-Laplacian, Appl. Math. Lett., 2018, 86, 119–125. doi: 10.1016/j.aml.2018.06.029

    CrossRef Google Scholar

    [20] J. E. M. Rivera and H. P. Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 2001, 63, 87–111. doi: 10.1023/A:1014091825772

    CrossRef Google Scholar

    [21] Y. Ye, Global existence and asymptotic behavior of solutions for a class of nonlinear degenerate wave equations, Int. J. Difference Equ., 2007, Article ID 19685.

    Google Scholar

    [22] Y. Zhijian, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 2003, 187, 520–540

    Google Scholar

Article Metrics

Article views(3004) PDF downloads(586) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint