[1]
|
P. Ballard and S. Basseville, Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem, ESAIM - Math. Model. Num., 2005, 39, 59–77. doi: 10.1051/m2an:2005004
CrossRef Google Scholar
|
[2]
|
L. Bociu and I. Lasiecka, Uniqueness of weak solutions for the semilinear wave equations with supercritical boundary/interior sources and damping, Discrete Contin. Dyn. Syst., 2008, 22, 835–860. doi: 10.3934/dcds.2008.22.835
CrossRef Google Scholar
|
[3]
|
H. Brézis, Analyse fonctionnelle: théorie et applications, Dunod, 1999.
Google Scholar
|
[4]
|
A. D. D. Cavalcanti, M. M. Cavalcanti, L. H. Fatori and M. A. Jorge Silva, Unilateral problems for the wave equation with degenerate a nonlocalized nonlinear damping: well-posedness and non-stability results, Math. Nachr., 2018, 291, 1–24. doi: 10.1002/mana.201600413
CrossRef Google Scholar
|
[5]
|
I. Chueshov and I. Lasiecka, Existence, uniqueness of weak solution and global attactors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 2006, 15, 777–809. doi: 10.3934/dcds.2006.15.777
CrossRef Google Scholar
|
[6]
|
M. R. Clark and O. A. Lima, Existence of solutions for a variational unilateral system, Electron. J. Differential Equations, 2002, 22, 1–18. doi: 10.1111/1468-0262.00282
CrossRef Google Scholar
|
[7]
|
A. Domokos and J. J. Manfredi, A second order differentiability technique of Bojarski-Iwaniec in the Heisenberg group, Functiones et Approximation, 2009, 40, 69–74. doi: 10.7169/facm/1238418798
CrossRef Google Scholar
|
[8]
|
M. Dreher, The wave equation for the p-Laplacian, Hokkaido Math. J., 2007, 36, 21–52. doi: 10.14492/hokmj/1285766660
CrossRef Google Scholar
|
[9]
|
H. Gao and T. Ma, Global solutions for a nonlinear wave equation with the p–Laplacian operator, Electron. J. Qual. Theory Differ. Equ., 1999, 11, 1–13.
Google Scholar
|
[10]
|
J. M. Greenberg, R. C. MacCamy and V. J. Vizel, On the existence, uniqueness, and stability of solution of the equation σ′(ux)uxx + λuxtx = ρ0utt, J. Math. Mech., 1968, 17, 707–728.
Google Scholar
|
[11]
|
N. Kikuchi and J. T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods, SIAM - Studies in Applied and Numerical Mathematics, Philadelphia, 1988.
Google Scholar
|
[12]
|
N. A. Lar'kin and L. A. Medeiros, On a variational inequality for the equations of the theory of the elasticity, well posed boundary value problem for non classical equation, Novosibrisk, Moscow, 1991, 6–11.
Google Scholar
|
[13]
|
J. L. Lions, Quelques methódes de resolution des probléms aux limites non lineáires, Dunod, Paris, 1969.
Google Scholar
|
[14]
|
T. Ma and J. A. Soriano, On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Anal., 1999, 37, 1029–1038. doi: 10.1016/S0362-546X(97)00714-1
CrossRef Google Scholar
|
[15]
|
L. A. Medeiros and M. M. Milla, Local solutions for a nonlinear unilateral problem, Rev. Roumaine Math. Pures Appl., 1986, XXXI, 371–382. doi: 10.2307/2045678
CrossRef Google Scholar
|
[16]
|
P. Pei, M. A. Rammaha and D. Toundykov, Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources, J. Math. Phys., 56, 2015, Article ID 081503.
Google Scholar
|
[17]
|
D. C. Pereira, H. Hguyen, C. A. Raposo and C. H. M. Maranhão, On the solutions for an extensible beam equation with internal damping and source terms, Differ. Equ. Appl., 2019, 11, 367–377.
Google Scholar
|
[18]
|
C. A. Raposo, D. C. Pereira, G. Araujo and A. Baena, Unilateral problems for the klein-gordon operator with nonlinearity of kirchhoff-carrier type, Electron. J. Differential Equations, 2015, 137, 1–14.
Google Scholar
|
[19]
|
C. A. Raposo, J. O. Ribeiro and A. P. Cattai, Global solution for a thermoelastic system with p-Laplacian, Appl. Math. Lett., 2018, 86, 119–125. doi: 10.1016/j.aml.2018.06.029
CrossRef Google Scholar
|
[20]
|
J. E. M. Rivera and H. P. Oquendo, Exponential stability to a contact problem of partially viscoelastic materials, J. Elasticity, 2001, 63, 87–111. doi: 10.1023/A:1014091825772
CrossRef Google Scholar
|
[21]
|
Y. Ye, Global existence and asymptotic behavior of solutions for a class of nonlinear degenerate wave equations, Int. J. Difference Equ., 2007, Article ID 19685.
Google Scholar
|
[22]
|
Y. Zhijian, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 2003, 187, 520–540
Google Scholar
|