2021 Volume 11 Issue 1
Article Contents

Peiguang Wang, Yameng Wang. QUADRATIC APPROXIMATION OF SOLUTIONS FOR SET-VALUED FUNCTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 532-545. doi: 10.11948/20200133
Citation: Peiguang Wang, Yameng Wang. QUADRATIC APPROXIMATION OF SOLUTIONS FOR SET-VALUED FUNCTIONAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 532-545. doi: 10.11948/20200133

QUADRATIC APPROXIMATION OF SOLUTIONS FOR SET-VALUED FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Corresponding author: Email address: pgwang@hbu.edu.cn(P. Wang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11771115, 11271106)
  • This paper investigates nonlinear set-valued functional differential equations with initial value conditions. By introducing the notion of Hukuhara partial derivative of set-valued function, using the comparison principle and the method of quasilinearization, we obtain monotone iterative sequences of approximate solutions which converge uniformly and quadratically to the solutions of such problems.
    MSC: 34A12, 34K07, 39B12
  • 加载中
  • [1] U. Abbas and V. Lupulescu, Set functional differential equations, Comm. Appl. Nonlinear Anal., 2011, 18(1), 91–110.

    Google Scholar

    [2] B. Ahmad and S. Sivasundaram, The monotone iterative technique for impulsive hybrid set valued integro-differential equations, Nonlinear Anal, 2006, 65(12), 2260–2276. doi: 10.1016/j.na.2006.01.033

    CrossRef Google Scholar

    [3] C. Appala Naidu, D. Dhaigude and J. Devi, Stability results in terms of two measures for set differential equations involving causal operators, Eur. J. Pure Appl. Math., 2017, 10(4), 645–654.

    Google Scholar

    [4] Z. Artstein, A calculus for set-valued maps and set-valued evolution equations, Set-Valued Anal., 1995, 3(3), 216–261.

    Google Scholar

    [5] A. Bashir and S. Sivasundaram, Basic results and stability criteria for set valued differential equations on time scales, Appl. Anal., 2007, 11(3), 419–427.

    Google Scholar

    [6] A. Bashir and S. Sivasundaram, Setvalued perturbed hybrid integro-differential equations and stability in terms of two measures, Dynam. Systems Appl., 2007, 16(2), 299–310. doi: 10.1016/j.disopt.2006.11.006

    CrossRef Google Scholar

    [7] T. Bhaskar and J. Devi, Nonuniform stability and boundedness criteria for set differential equations, Appl. Anal., 2005, 84(2), 131–143. doi: 10.1080/00036810410001724346

    CrossRef Google Scholar

    [8] T. Bhaskar and J. Devi, Set differential systems and vector lyapunov functions, Appl. Math. Comput., 2005, 165(3), 539–548.

    Google Scholar

    [9] T. Bhaskar, V. Lakshmikantham and J. Devi, Nonlinear variation of parameters formula for set differential equations in a metric space, Nonlinear Anal., 2005, 63(5–7), 735–744. doi: 10.1016/j.na.2005.02.036

    CrossRef Google Scholar

    [10] T. Bhasker and V. Lakshmikantham, Lyapunov stablity for set differential equations, Dynam. Systems Appl., 2004, 13(1), 1371–1378.

    Google Scholar

    [11] F. Clarke, Y. Ledyaev, B. Sternand and P. Wolenski, Nonsmooth analysis and control theory, Springer Verlag, New York, 1998.

    Google Scholar

    [12] F. De Blasi, V. Lakshmikantham and T. Bhaskar, An existence theorem for set differential inclusions in a semilinear metric space, Control and Cybernetics, 2007, 36(3), 571–582.

    Google Scholar

    [13] J. Devi and A. Vatsala, A study of set differential equations with delay, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 2004, 11(2), 287–300.

    Google Scholar

    [14] Z. Drice, F. Mcrae and J. Devi, Set differential equations with causal operators, Math. Probl. Eng., 2005, 2005(2), 185–194. doi: 10.1155/MPE.2005.185

    CrossRef Google Scholar

    [15] A. Dyki, Quasilinearization method for functional differential equations with delayed arguments, Bull. Belg. Math. Soc. Simon Stevin, 2011, 18(5), 805–819. doi: 10.36045/bbms/1323787168

    CrossRef Google Scholar

    [16] S. Hong, Stablity criteria for set dynamic equations on time scale, Comput. Math. Appl., 2010, 59(11), 3444–3457. doi: 10.1016/j.camwa.2010.03.033

    CrossRef Google Scholar

    [17] M. Kisielewicz, Description of a class of differential equations with set-valued solutions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 1975, 58(8), 158–162.

    Google Scholar

    [18] V. Lakshmikantham, T. Bhasker and J. Devi, Theory of set differential equations in metric spaces, Cambridge Scientific Publisher, UK, 2006.

    Google Scholar

    [19] V. Lakshmikantham, S. Leela and J. Devi, Stability theory for set differential equations, Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 2004, 11, 181–189.

    Google Scholar

    [20] V. Lupulescu, Successive approximations to solutions of set differential equations in banach spaces, Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 2008, 15(3), 391–401.

    Google Scholar

    [21] M. Malinowski, Second type hukuhara differentiable solutions to the delay setvalued differential equations, Appl. Math. Comput., 2012, 218(18), 9427–9437.

    Google Scholar

    [22] A. Martynyuk and I. Stamova, Stability analysis of set trajectories for families of impulsive equations, Appl. Anal., 2019, 98(4), 828–842. doi: 10.1080/00036811.2017.1403589

    CrossRef Google Scholar

    [23] D. Nguyen, T. Le and T. Tran, Stability criteria for set control differential equations, Nonlinear Anal., 2008, 69(11), 3715–3721. doi: 10.1016/j.na.2007.10.007

    CrossRef Google Scholar

    [24] N. Nguyen and T. Tran, Stability of set differential euqations and applications, Dynam. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal., 2009, 71(5–6), 1526–1533.

    Google Scholar

    [25] L. Pinto, A. Brandao, F. De Blasi and F. Iervolino, Uniqueness and existence theorems for differential equations with compact convex valued solutions, Boll. Unione Mat. Ital., 1969, 3, 47–54.

    Google Scholar

    [26] A. Plotnikov, T. Komleva and L. Plotnikova, Averaging of a system of setvalued differential equations with the hukuhara derivative, J. Uncertain Syst., 2019, 13(1), 3–13.

    Google Scholar

    [27] L. Quang, N. Hoa, N. Phu and T. Tung, Existence of extremal solutions for interval-valued functional integro-differential equations, J. Intell. Fuzzy Syst., 2016, 30(6), 3495–3512. doi: 10.3233/IFS-162096

    CrossRef Google Scholar

    [28] V. Slynko, Stability in terms of two measures for set difference equations in space conv $\mathbb{R}$n, Appl. Anal., 2017, 96(2), 278–292. doi: 10.1080/00036811.2015.1126712

    CrossRef $\mathbb{R}$n" target="_blank">Google Scholar

    [29] V. Slynko and C. Tunç, Instability of set differential equations, J. Math. Anal. Appl., 2018, 467(2), 935–947. doi: 10.1016/j.jmaa.2018.07.048

    CrossRef Google Scholar

    [30] A. Umber, L. Vasile and J. Tǎrgu, Neutral set differential equations, Czech. Math. J., 2015, 65(3), 593–615. doi: 10.1007/s10587-015-0199-9

    CrossRef Google Scholar

Article Metrics

Article views(2648) PDF downloads(369) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint