2021 Volume 11 Issue 1
Article Contents

Bing He, Yong Hong, Zhen Li, Bicheng Yang. NECESSARY AND SUFFICIENT CONDITIONS AND OPTIMAL CONSTANT FACTORS FOR THE VALIDITY OF MULTIPLE INTEGRAL HALF-DISCRETE HILBERT TYPE INEQUALITIES WITH A CLASS OF QUASI-HOMOGENEOUS KERNELS[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 521-531. doi: 10.11948/20200086
Citation: Bing He, Yong Hong, Zhen Li, Bicheng Yang. NECESSARY AND SUFFICIENT CONDITIONS AND OPTIMAL CONSTANT FACTORS FOR THE VALIDITY OF MULTIPLE INTEGRAL HALF-DISCRETE HILBERT TYPE INEQUALITIES WITH A CLASS OF QUASI-HOMOGENEOUS KERNELS[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 521-531. doi: 10.11948/20200086

NECESSARY AND SUFFICIENT CONDITIONS AND OPTIMAL CONSTANT FACTORS FOR THE VALIDITY OF MULTIPLE INTEGRAL HALF-DISCRETE HILBERT TYPE INEQUALITIES WITH A CLASS OF QUASI-HOMOGENEOUS KERNELS

  • Corresponding author: Email address: lzhhymath@163.com(Z. Li) 
  • Fund Project: The authors were supported by NNSF of China (No. 61772140), and Innovation Team Construction Project of Guangdong Province (2018KCXTD020)
  • The problem of equivalent parameters and the best constant factor for the existence of quasi-homogeneous half-discrete Hilbert type inequality $ \int_{R_ + ^m} {\sum\limits_{n = 1}^\infty G } \left( {{n^{{\lambda _1}}}/\left\| x \right\|_{m, \rho }^{{\lambda _2}}} \right){a_n}f(x){\rm{d}}x \le M{\left\| {\tilde a} \right\|_{p, \alpha }}{\left\| f \right\|_{q, \beta }} $ is discussed, and their applications in the study of operator boundedness and norm are also considered.
    MSC: 26D15, 47A07
  • 加载中
  • [1] T. Batbold, M. Krnić and P. Vuković, A unified approach to fractal Hilbert-type inequalities, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-2076-9.

    CrossRef Google Scholar

    [2] O. F. Brevig, Sharp norm estimates for composition operators and Hilbert-type inequalities, B. Lond. Math. Soc., 2017, 49(6), 965-978. doi: 10.1112/blms.12092

    CrossRef Google Scholar

    [3] A. Čižmešija, M. Krnić and J. Pečarić, General Hilbert-Type Inequalities with Non-conjugate Exponents, Math. Inequal. Appl., 2008, 11(2), 237-269.

    Google Scholar

    [4] G. M. Fichtingoloz, A course in differential and integral calculus, People's Education Press, Beijing, China, 1957, 404-423.

    Google Scholar

    [5] L. He, H. Liu and B. Yang, On a more accurate reverse Mulholland-type inequality with parameters, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-2139-y.

    CrossRef Google Scholar

    [6] Y. Hong, On the norm of a singular multiple integral operator with homogeneous kernel and its application, Chinese Annals of Mathematics, 2011, 32(5), 599-606. doi: 10.1007/s10255-011-0044-3

    CrossRef Google Scholar

    [7] Y. Hong, A Hilbert-Type Integral Inequality with Quasi-homoeneous Kernel and Several Functions, Acta Mathematics Sinica, Chinese Series, 2014, 57(5), 833-840.

    Google Scholar

    [8] Y. Hong, B. He and B. Yang, Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory, J. Math. Inequal., 2018, 12(3), 777-788.

    Google Scholar

    [9] Y. Hong, Q. Huang and B. Yang, et al., The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications, J. Inequal. Appl., 2017. DOI: 10.1186/s13660-017-1592-8.

    CrossRef Google Scholar

    [10] M. Krnić and P. Vuković, A class of Hilbert-type inequalities obtained via the improved Young inequality, Results math., 2017, 71, 185-196. doi: 10.1007/s00025-015-0506-7

    CrossRef Google Scholar

    [11] J. Kuang, Applied Inequalities, Shangdong Science and Technology Press, Jinan, China, 2004, 534-535.

    Google Scholar

    [12] R. Luo and B. Yang, Parameterized discrete Hilbert-type inequalities with intermediate variables, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-2095-6.

    CrossRef Google Scholar

    [13] A. Osekowski, Inequalities for Hilbert operator and its extensions: The probabilistic approach, Ann. Probab., 2017, 45(1), 535-563. doi: 10.1214/15-AOP1026

    CrossRef Google Scholar

    [14] M. T. Rassias, B. Yang and A. Raigorodskii, Two Kinds of the Reverse HardyType Integral Inequalities with the Equivalent Forms Related to the Extended Riemann Zeta Function, Appl. Anal. Discrete Math., 2018, 12, 273-296. doi: 10.2298/AADM180130011R

    CrossRef Google Scholar

    [15] S. H. Saker, A. A. El-Deeb and H. M. Rezk, et al., On Hilbert's inequality on time scales, Appl. Anal. Discr. Math., 2017, 11(2), 399-423.

    Google Scholar

    [16] B. Tserendorj, A. Vandanjav and L. E. Azar, A new discrete Hilbert-type inequality involving partial sums, J. Inequal. Appl., 2019. DOI: 10.1186/s13660- 019-2087-6.

    CrossRef Google Scholar

    [17] B. Yang, M. Huang and Y. Zhong, On a parametric Mulholland-type inequality and applications, Abstr. Appl. Anal., 2019. DOI: 10.1155/2019/8317029.

    CrossRef Google Scholar

Article Metrics

Article views(2354) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint