[1]
|
T. Batbold, M. Krnić and P. Vuković, A unified approach to fractal Hilbert-type inequalities, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-2076-9.
CrossRef Google Scholar
|
[2]
|
O. F. Brevig, Sharp norm estimates for composition operators and Hilbert-type inequalities, B. Lond. Math. Soc., 2017, 49(6), 965-978. doi: 10.1112/blms.12092
CrossRef Google Scholar
|
[3]
|
A. Čižmešija, M. Krnić and J. Pečarić, General Hilbert-Type Inequalities with Non-conjugate Exponents, Math. Inequal. Appl., 2008, 11(2), 237-269.
Google Scholar
|
[4]
|
G. M. Fichtingoloz, A course in differential and integral calculus, People's Education Press, Beijing, China, 1957, 404-423.
Google Scholar
|
[5]
|
L. He, H. Liu and B. Yang, On a more accurate reverse Mulholland-type inequality with parameters, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-2139-y.
CrossRef Google Scholar
|
[6]
|
Y. Hong, On the norm of a singular multiple integral operator with homogeneous kernel and its application, Chinese Annals of Mathematics, 2011, 32(5), 599-606. doi: 10.1007/s10255-011-0044-3
CrossRef Google Scholar
|
[7]
|
Y. Hong, A Hilbert-Type Integral Inequality with Quasi-homoeneous Kernel and Several Functions, Acta Mathematics Sinica, Chinese Series, 2014, 57(5), 833-840.
Google Scholar
|
[8]
|
Y. Hong, B. He and B. Yang, Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory, J. Math. Inequal., 2018, 12(3), 777-788.
Google Scholar
|
[9]
|
Y. Hong, Q. Huang and B. Yang, et al., The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications, J. Inequal. Appl., 2017. DOI: 10.1186/s13660-017-1592-8.
CrossRef Google Scholar
|
[10]
|
M. Krnić and P. Vuković, A class of Hilbert-type inequalities obtained via the improved Young inequality, Results math., 2017, 71, 185-196. doi: 10.1007/s00025-015-0506-7
CrossRef Google Scholar
|
[11]
|
J. Kuang, Applied Inequalities, Shangdong Science and Technology Press, Jinan, China, 2004, 534-535.
Google Scholar
|
[12]
|
R. Luo and B. Yang, Parameterized discrete Hilbert-type inequalities with intermediate variables, J. Inequal. Appl., 2019. DOI: 10.1186/s13660-019-2095-6.
CrossRef Google Scholar
|
[13]
|
A. Osekowski, Inequalities for Hilbert operator and its extensions: The probabilistic approach, Ann. Probab., 2017, 45(1), 535-563. doi: 10.1214/15-AOP1026
CrossRef Google Scholar
|
[14]
|
M. T. Rassias, B. Yang and A. Raigorodskii, Two Kinds of the Reverse HardyType Integral Inequalities with the Equivalent Forms Related to the Extended Riemann Zeta Function, Appl. Anal. Discrete Math., 2018, 12, 273-296. doi: 10.2298/AADM180130011R
CrossRef Google Scholar
|
[15]
|
S. H. Saker, A. A. El-Deeb and H. M. Rezk, et al., On Hilbert's inequality on time scales, Appl. Anal. Discr. Math., 2017, 11(2), 399-423.
Google Scholar
|
[16]
|
B. Tserendorj, A. Vandanjav and L. E. Azar, A new discrete Hilbert-type inequality involving partial sums, J. Inequal. Appl., 2019. DOI: 10.1186/s13660- 019-2087-6.
CrossRef Google Scholar
|
[17]
|
B. Yang, M. Huang and Y. Zhong, On a parametric Mulholland-type inequality and applications, Abstr. Appl. Anal., 2019. DOI: 10.1155/2019/8317029.
CrossRef Google Scholar
|