2021 Volume 11 Issue 6
Article Contents

Guang-hua Gao, Peng Xu, Rui Tang. FAST COMPACT DIFFERENCE SCHEME FOR THE FOURTH-ORDER TIME MULTI-TERM FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE FIRST DIRICHLET BOUNDARY[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2736-2761. doi: 10.11948/20200405
Citation: Guang-hua Gao, Peng Xu, Rui Tang. FAST COMPACT DIFFERENCE SCHEME FOR THE FOURTH-ORDER TIME MULTI-TERM FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE FIRST DIRICHLET BOUNDARY[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2736-2761. doi: 10.11948/20200405

FAST COMPACT DIFFERENCE SCHEME FOR THE FOURTH-ORDER TIME MULTI-TERM FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE FIRST DIRICHLET BOUNDARY

  • Corresponding author: Email address: gaogh@njupt.edu.cn(G. H. Gao) 
  • Fund Project: The authors were supported by Natural Science Foundation of Jiangsu Province of China (No.BK20191375) and the project NUPTSF (No. NY220037)
  • In this paper, a fast compact difference scheme is proposed for the initial-boundary value problem of fourth-order time multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions. Using the method of order reduction, the original problem can be converted to an equivalent lower-order system. Then at some super-convergence points, the multi-term Caputo derivatives are fast evaluated based on the sum-of-exponentials (SOE) approximation for the kernel functions appeared in Caputo fractional derivatives. The difficulty caused by the first Dirichlet boundary conditions is carefully handled. The energy method is used to illustrate the unconditional stability and convergence of the proposed fast compact scheme. The convergence accuracy is second-order in time and fourth-order in space if the solution has enough regularity. Compared with the direct scheme without the acceleration in time direction, the CPU time of the current fast scheme is largely reduced, which is shown by numerical examples.

    MSC: 65M06, 65M12, 65M15
  • 加载中
  • [1] E. A. Abdel-Rehim, A. M. A. El-Sayed and A. S. Hashen, Simulation of the approximate solutions of the time-fractional multi-term wave equations, Comput. Math. Appl., 2017, 73, 1134-1154. doi: 10.1016/j.camwa.2016.06.019

    CrossRef Google Scholar

    [2] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 2015, 280, 424-438. doi: 10.1016/j.jcp.2014.09.031

    CrossRef Google Scholar

    [3] M. Amin, M. Abbas, M. K. lqbal and D. Baleanu, Non-polynomial quintic spline for numerical solution of fourth-order time fractional partial differential equations, Adv. Differ. Equ., 2019, 183. https://doi.org/10.1186/s13662-019-2125-1. doi: 10.1186/s13662-019-2125-1

    CrossRef Google Scholar

    [4] M. Cui, Compact difference scheme for time-fractional fourth-order equation with first Dirichlet boundary condition, East Asian J. Appl. Math., 2019, 9, 45-66. doi: 10.4208/eajam.260318.220618

    CrossRef Google Scholar

    [5] M. Fei and C. Huang, Galerkin-Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation, Int. J. Comput. Math., 2020, 97, 1183-1196. doi: 10.1080/00207160.2019.1608968

    CrossRef Google Scholar

    [6] G. Gao, A. A. Alikhanov and Z. Sun, The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations, J. Sci. Comput., 2017, 73, 93-121. doi: 10.1007/s10915-017-0407-x

    CrossRef Google Scholar

    [7] G. Gao and R. Liu, A compact difference scheme for fourth-order temporal multi-term fractional wave equations and maximum error estimates, East Asian J. Appl. Math., 2019, 9, 703-722. doi: 10.4208/eajam.171118.060119

    CrossRef Google Scholar

    [8] G. Gao, R. Tang and Y. Qian, A compact finite difference scheme for the fourth-order time multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions, Int. J. Numer. Anal. Model., 2021, 18, 100-119.

    Google Scholar

    [9] G. Gao and Q. Yang, Fast evaluation of linear combinations of Caputo fractional derivatives and its appications to multi-term time-fractional sub-diffusion equations, Numer. Math. Theor. Meth. Appl., 2020, 13, 433-451. doi: 10.4208/nmtma.OA-2019-0013

    CrossRef Google Scholar

    [10] A. Gokdogan, A. Yildirim and M. Merdan, Solving a fractional order model of HIV infection of CD4(+) T cells, Math. Comput. Model., 2011, 54, 2132-2138. doi: 10.1016/j.mcm.2011.05.022

    CrossRef Google Scholar

    [11] X. Gu, H. Sun, Y. Zhang and Y. Zhao, Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian, Math. Methods Appl. Sci., 2021, 44(1), 441-463. doi: 10.1002/mma.6746

    CrossRef Google Scholar

    [12] X. Hu and L. Zhang, A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system, Int. J. Comput. Math., 2014, 91, 2215-2231. doi: 10.1080/00207160.2013.871000

    CrossRef Google Scholar

    [13] C. Huang and M. Stynes, Superconvergence of a finite element method for the multi-term time-fractional diffusion problem, J. Sci. Comput., 2020, 82(10), 10. https://doi.org/10.1007/s10915-019-01115-w. doi: 10.1007/s10915-019-01115-w

    CrossRef Google Scholar

    [14] H. Jafari, M. Dehghan and K. Sayevand, Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method, Numer. Methods Partial Differential Equ., 2008, 24, 1115-1126. doi: 10.1002/num.20308

    CrossRef Google Scholar

    [15] C. Ji, Z. Sun and Z. Hao, Numerical algorithms with high spatial accuracy for the fourth order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 2016, 66, 1148-1174. doi: 10.1007/s10915-015-0059-7

    CrossRef Google Scholar

    [16] S. Jiang, J. Zhang, Q. Zhang and Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 2017, 21, 650-678. doi: 10.4208/cicp.OA-2016-0136

    CrossRef Google Scholar

    [17] B. Jin, R. Lazarov, Y. Liu and Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 2015, 281, 825-843. doi: 10.1016/j.jcp.2014.10.051

    CrossRef Google Scholar

    [18] H. Liao, Y. Yan and J. Zhang, Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations, J. Sci. Comput., 2019, 80, 1-25. doi: 10.1007/s10915-019-00927-0

    CrossRef Google Scholar

    [19] F. Liu, V. Anh and I. Turner, Numerical solution of the space fractional Fokker-Planck equation, Int. J. Comput. Appl. Math., 2004, 166, 209-219.

    Google Scholar

    [20] F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang and Q. Liu, Numerical methods for solving the multi-term time-fractional wave-diffusion equation, Fract. Calc. Appl. Anal., 2013, 16, 9-25. doi: 10.2478/s13540-013-0002-2

    CrossRef Google Scholar

    [21] Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 2011, 374, 538-548. doi: 10.1016/j.jmaa.2010.08.048

    CrossRef Google Scholar

    [22] P. Lyu, Y. Liang and Z. Wang, A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation, Appl. Numer. Math., 2020, 151, 448-471. doi: 10.1016/j.apnum.2019.11.012

    CrossRef Google Scholar

    [23] S. Nandal and D. N. Pandey, Numerical solution of non-linear fourth order fractional sub-diffusion wave equation with time delay, Appl. Math. Comput., 2020, 369, 124900. https://doi.org/10.1016/j.amc.2019.124900. doi: 10.1016/j.amc.2019.124900

    CrossRef Google Scholar

    [24] S. Nandal and D. N. Pandey, Numerical solution of time fractional non-linear neutral delay differential equations of fourth-order, Malaya Journal of Matematik, 2019, 7, 579-589. doi: 10.26637/MJM0703/0035

    CrossRef Google Scholar

    [25] S. Nandal and D. N. Pandey, Numerical treatment of non-linear fourth-order distributed fractional sub-diffusion equation with time-delay, Commun. Nonlinear Sci. Numer. Simulat., 2020, 83, 105146. doi: 10.1016/j.cnsns.2019.105146

    CrossRef Google Scholar

    [26] S. Nandal and D. N. Pandey, Second order compact difference scheme for time fractional sub-diffusion fourth-order neutral delay differential equations, Differ. Equ. Dyn. Syst., 2021, 29(1), 69-86. doi: 10.1007/s12591-020-00527-7

    CrossRef Google Scholar

    [27] S. C. Shiralashetti and A. B. Deshi, An efficient Harr wavelet collocation method for the numerical solution of multi-term fractional differential equations, Nonlinear Dyn., 2016, 83, 293-303. doi: 10.1007/s11071-015-2326-4

    CrossRef Google Scholar

    [28] S. S. Siddiqi and S. Arshed, Numerical solution of time-fractional fourth-order partial differential equations, Int. J. Comput. Math., 2015, 92, 1496-1518. doi: 10.1080/00207160.2014.948430

    CrossRef Google Scholar

    [29] V. Srivastava and K. N. Rai, A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues, Math. Comput. Model., 2010, 51, 616-624. doi: 10.1016/j.mcm.2009.11.002

    CrossRef Google Scholar

    [30] H. Sun and Z. Sun, A fast temporal second-order compact ADI difference scheme for the 2D multi-term fractional wave equation, Numer. Algor., 2020. https://doi.org/10.1007/s11075-020-00910-z. doi: 10.1007/s11075-020-00910-z

    CrossRef Google Scholar

    [31] H. Sun, X. Zhao and Z. Sun, The temporal second order difference schemes based on the interpolation approximation for time multi-term fractional wave equation, J. Sci. Comput., 2019, 78, 467-498. doi: 10.1007/s10915-018-0820-9

    CrossRef Google Scholar

    [32] V. V. Uchaikin, On the fractional derivative model of the transport of cosmic rays in the Galaxy, JETP Lett., 2010, 91, 105-109. doi: 10.1134/S002136401003001X

    CrossRef Google Scholar

    [33] S. Vong and Z. Wang, Compact finite difference scheme for the fourth-order fractional subdiffusion system, Adv. Appl. Math. Mech., 2014, 6, 419-435. doi: 10.4208/aamm.2014.4.s1

    CrossRef Google Scholar

    [34] L. Wei, Stability and convergence of a fully discrete local discontinuous Galerkin method for multi-term time fractional diffusion equations, Numer. Algor., 2017, 76, 695-707. doi: 10.1007/s11075-017-0277-1

    CrossRef Google Scholar

    [35] F. Xu, Y. Lai and X. Shu, Chaos in integer order and fractional order financial systems and their synchronization, Chaos Solitons Fractals, 2018, 117, 125-136. doi: 10.1016/j.chaos.2018.10.005

    CrossRef Google Scholar

    [36] D. Xu, W. Qiu and J. Guo, A compact finite difference scheme for the fourth-order time-fractional integro-differential equation with a weakly singular kernel, Numer. Methods Partial Differential Equations, 2020, 36, 439-458. doi: 10.1002/num.22436

    CrossRef Google Scholar

    [37] Y. Yan, Z. Sun and J. Jiang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, Commun. Comput. Phys., 2017, 22, 1028-1048. doi: 10.4208/cicp.OA-2017-0019

    CrossRef Google Scholar

    [38] Z. Yao and Z. Wang, A compact difference scheme for fourth-order fractional sub-diffusion equations with Neumann boundary conditions, J. Appl. Anal. Comput., 2018, 8, 1159-1169.

    Google Scholar

    [39] J. Zhang, F. Liu, Z. Lin and V. Anh, Analytical and numerical solutions of a multi-term time-fractional Burgers' fluid model, Appl. Math. Comput., 2019, 356, 1-12.

    Google Scholar

Figures(2)  /  Tables(5)

Article Metrics

Article views(12611) PDF downloads(555) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint