2021 Volume 11 Issue 5
Article Contents

Yuan Zhou, Solomon Manukure. RATIONAL AND INTERACTIVE SOLUTIONS TO THE B-TYPE KADOMTSEV-PETVIASHVILI EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2473-2490. doi: 10.11948/20200446
Citation: Yuan Zhou, Solomon Manukure. RATIONAL AND INTERACTIVE SOLUTIONS TO THE B-TYPE KADOMTSEV-PETVIASHVILI EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2473-2490. doi: 10.11948/20200446

RATIONAL AND INTERACTIVE SOLUTIONS TO THE B-TYPE KADOMTSEV-PETVIASHVILI EQUATION

  • In this paper, a new method to find quadratic function solutions to bilinear forms is proposed. By applying the Hirota direct method, we construct some important exact solutions to the B-type Kadomtsev-Petviashvili (BKP) equation of fourth-order. Solitons, rational solutions, lump solutions and interaction solutions are presented with the help of symbolic computations. The dynamics of some selected solutions are also studied with the aid of 3D plots.

    MSC: 35A25, 37K10
  • 加载中
  • [1] G. P. Agrawal, Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century, Springer, 2000, 195-211.

    Google Scholar

    [2] I. S. Aranson, A. Pikovsky, N. F. Rulkov and L. S. Tsimring, Advances in Dynamics, Patterns, Cognition: Challenges in Complexity, 20, Springer, 2017.

    Google Scholar

    [3] H. Aref, Point vortex dynamics: a classical mathematics playground, J. Math. Phys., 2007, 48(6), 065401. doi: 10.1063/1.2425103

    CrossRef Google Scholar

    [4] H. Aref, Vortices and polynomials, Fluid Dyn. Res., 2007, 39(1-3), 5. doi: 10.1016/j.fluiddyn.2006.04.004

    CrossRef Google Scholar

    [5] H. Aref, P. K. Newton, M. A. Stremler et al., Vortex crystals, Adv. Appl. Mech., 2003, 39, 2-81.

    Google Scholar

    [6] I. Barashenkov and D. E. Pelinovsky, Exact vortex solutions of the complex sine-gordon theory on the plane, Phys. Lett. B, 1998, 436(1-2), 117-124. doi: 10.1016/S0370-2693(98)00841-7

    CrossRef Google Scholar

    [7] S. J. Chen, W. X. Ma and X. Lü, Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation, Commun. Nonlinear Sci. Numer. Simul., 2020, 83, 105135. doi: 10.1016/j.cnsns.2019.105135

    CrossRef Google Scholar

    [8] L. Cheng and Y. Zhang, Wronskian and linear superposition solutions to generalized KP and BKP equations, Nonlinear Dyn., 2017, 90(1), 355-362. doi: 10.1007/s11071-017-3666-z

    CrossRef Google Scholar

    [9] P. A. Clarkson and E. Dowie, Rational solutions of the boussinesq equation and applications to rogue waves, Trans. Math. Its Appl., 2017, 1(1), tnx003.

    Google Scholar

    [10] E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, in Proceedings of RIMS Symposium 1981 (Edited by M. Jimbo and T. Miwa), World Scientific Publishing Co., 1983, 39-120.

    Google Scholar

    [11] P. Deligne, P. I. Etingof and D. S. Freed, Quantum fields and strings: a course for mathematicians, 1, American Mathematical Society Providence, 1999.

    Google Scholar

    [12] P. G. Drazin and R. S. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge, 1989.

    Google Scholar

    [13] S. Y. Eremenko, Atomic solitons as a new class of solitons, J. Nonlinear World, 2018, (6), 39-63.

    Google Scholar

    [14] A. S. Fokas and M. J. Ablowitz, On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane, J. Math. Phys., 1984, 25(8), 2494-2505. doi: 10.1063/1.526471

    CrossRef Google Scholar

    [15] L. N. Gao, X. Y. Zhao, Y. Y. Zi et al., Resonant behavior of multiple wave solutions to a Hirota bilinear equation, Comput. Math. Appl., 2016, 72, 1225-1229. doi: 10.1016/j.camwa.2016.06.008

    CrossRef Google Scholar

    [16] L. N. Gao, Y. Y. Zi, Y. H. Yin et al., Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 2017, 89(3), 2233-2240. doi: 10.1007/s11071-017-3581-3

    CrossRef Google Scholar

    [17] C. R. Gilson and J. J. C. Nimmo, Lump solutions of the BKP equation, Phy. Lett. A, 1990, 147, 2705-2712.

    Google Scholar

    [18] R. Grimshaw, Korteweg de-vries equation, in Nonlinear waves in fluids: recent advances and modern applications, Springer, 2005, 1-28.

    Google Scholar

    [19] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 1971, 27, 1192-1194. doi: 10.1103/PhysRevLett.27.1192

    CrossRef Google Scholar

    [20] R. Hirota, Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Japan, 1972, 33, 1456-1458. doi: 10.1143/JPSJ.33.1456

    CrossRef Google Scholar

    [21] R. Hirota, Exact solution of the sine-Gordon equation for multiple collisions of solitons, J. Phys. Soc. Japan, 1972, 33, 1459-1463. doi: 10.1143/JPSJ.33.1459

    CrossRef Google Scholar

    [22] R. Hirota, Soliton Solutions to the BKP Equations. I. the Pfaffian technique, J. Phys. Soc. Japan, 1989, 58, 2285-2296. doi: 10.1143/JPSJ.58.2285

    CrossRef Google Scholar

    [23] R. Hirota, Soliton Solutions to the BKP Equations. Ⅱ. The Integral Equation, J. Phys. Soc. Japan, 1989, 58, 2705-2712. doi: 10.1143/JPSJ.58.2705

    CrossRef Google Scholar

    [24] R. Hirota, The direct method in soliton theory, Cambridge University Press, Cambridge, 2004.

    Google Scholar

    [25] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 1970, 15, 539-541.

    Google Scholar

    [26] Y. Kang, Y. Zhang and L. Jin, Soliton solution to BKP equation in Wronskian form, Appl. Math. Comput., 2013, 224, 250-258.

    Google Scholar

    [27] D. J. Kaup, The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction, J. Math. Phys., 1981, 22 (6), 1176-1181. doi: 10.1063/1.525042

    CrossRef Google Scholar

    [28] L. Kaur and A. M. Wazwaz, Bright-dark lump wave solutions for a new form of the (3+1)-dimensional bkp-boussinesq equation, Preprint.

    Google Scholar

    [29] L. Kaur and A. M. Wazwaz, Dynamical analysis of lump solutions for (3+1) dimensional generalized KP-Boussinesq equation and Its dimensionally reduced equations, Phys. Scr., 2018, 93(7), 075203. doi: 10.1088/1402-4896/aac8b8

    CrossRef Google Scholar

    [30] L. Kaur and A. M. Wazwaz, Bright-dark optical solitons for Schrödinger-Hirota equation with variable coefficients, Optik, 2019, 179, 479-484. doi: 10.1016/j.ijleo.2018.09.035

    CrossRef Google Scholar

    [31] L. Kaur and A. M. Wazwaz, Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation, Int. J. Num. Meth. Heat Fluid Flow, 2019, 29(2), 569-579. doi: 10.1108/HFF-07-2018-0405

    CrossRef Google Scholar

    [32] P. G. Kevrekidis, D. J. Frantzeskakis and R. Carretero-González, Emergent nonlinear phenomena in Bose-Einstein condensates: theory and experiment, 45, Springer Science & Business Media, 2007.

    Google Scholar

    [33] I. Kourakis and P. K. Shukla, Discrete breather modes associated with vertical dust grain oscillations in dusty plasma crystals, Phys. Plasmas, 2005, 12(1), 014502. doi: 10.1063/1.1824908

    CrossRef Google Scholar

    [34] Y. Liang, G. Wei and X. Li, Painlevé integrability, similarity reductions, new soliton and soliton-like similarity solutions for the (2+1)-dimensional BKP equation, Nonlinear Dyn., 2010, 62(1-2), 195-202. doi: 10.1007/s11071-010-9709-3

    CrossRef Google Scholar

    [35] X. Lü, New bilinear Bäcklund transformation with multisoliton solutions for the (2+1)-dimensional Sawada–Kotera model, Nonlinear Dyn., 2014, 76, 161-168. doi: 10.1007/s11071-013-1118-y

    CrossRef Google Scholar

    [36] X. Lü and S. J. Chen, Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: One-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dyn., 2021, 103, 947-977. doi: 10.1007/s11071-020-06068-6

    CrossRef Google Scholar

    [37] X. Lü, S. J. Chen and W. X. Ma, Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation, Nonlinear Dyn., 2016, 86, 523-534. doi: 10.1007/s11071-016-2905-z

    CrossRef Google Scholar

    [38] X. Lü, S. T. Chen and W. X. Ma, Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn., 2016, 86, 523-534. doi: 10.1007/s11071-016-2905-z

    CrossRef Google Scholar

    [39] X. Lü, Y. F. Hua, S. J. Chen and X. F. Tang, Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painleve analysis, soliton solutions, Backlund transformation, Lax pair and infinitely many conservation laws, Commun. Nonlinear Sci. Numer. Simul., 2021, 95, 105612. doi: 10.1016/j.cnsns.2020.105612

    CrossRef Google Scholar

    [40] X. Lü and W. X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dyn., 2016, 85, 1217-1222. doi: 10.1007/s11071-016-2755-8

    CrossRef Google Scholar

    [41] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 2015, 379, 1975-1978. doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [42] W. X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Diff. Eqs., 2018, 264, 2633-2659. doi: 10.1016/j.jde.2017.10.033

    CrossRef Google Scholar

    [43] W. X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Mod. Phys. B, 2016, 30, 1640018. doi: 10.1142/S021797921640018X

    CrossRef Google Scholar

    [44] S. V. Manakov, V. E. Zakhorov, L. A. Bordag et al., Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A, 1977, 63, 205-206. doi: 10.1016/0375-9601(77)90875-1

    CrossRef Google Scholar

    [45] S. Manukure, A. Chowdhury and Y. Zhou, Complexiton solutions to the asymmetric Nizhnik-Novikov-Veselov equation, Int. J. Mod. Phys. B, 2019, 33, 1950098. doi: 10.1142/S021797921950098X

    CrossRef Google Scholar

    [46] S. Manukure and Y. Zhou, A (2+1)-dimensional shallow water equation and its explicit lump solutions, Int. J. Mod. Phys. B, 2019, 33(7), 1950038. doi: 10.1142/S0217979219500383

    CrossRef Google Scholar

    [47] S. Manukure and Y. Zhou, A study of lump and line rogue wave solutions to a (2+1)-dimensional nonlinear equation, J. Geom. Phys., 2021, 167, 104274. doi: 10.1016/j.geomphys.2021.104274

    CrossRef Google Scholar

    [48] S. Manukure, Y. Zhou and W. X. Ma, Lump solutions to a (2+1)-dimensional extended KP equation, Comput. Math. Appl., 2018, 75(7), 2414-2419. doi: 10.1016/j.camwa.2017.12.030

    CrossRef Google Scholar

    [49] Y. Matsuno, Exact multi-soliton solution of the benjamin-ono equation, J. Phys. A Math. Gen, 1979, 12(4), 619. doi: 10.1088/0305-4470/12/4/019

    CrossRef Google Scholar

    [50] V. Matveev and M. Salle, Darboux transformations and solitons, Springer, Berlin, 1991.

    Google Scholar

    [51] J. McKenzie, The ion-acoustic soliton: A gas-dynamic viewpoint, Phys. Plasmas, 2002, 9(3), 800-805. doi: 10.1063/1.1445757

    CrossRef Google Scholar

    [52] J. J. C. Nimmo, Hall-littlewood symmetric functions and the BKP equation, J. Phys. A, 1990, 23(5), 751-760. doi: 10.1088/0305-4470/23/5/018

    CrossRef Google Scholar

    [53] J. J. C. Nimmo and A. Orlov, A relationship between rational and multi-soliton solutions of the BKP hierarchy, Glasgow Math. J., 2005, 47A, 149-168.

    Google Scholar

    [54] Y. Ogawa, Generalized q-functions and uc hierarchy of b-type, Tokyo J. Math., 2009, 32(2), 349-380.

    Google Scholar

    [55] N. Olver and I. V. Barashenkov, Complex sine-gordon-2: A new algorithm for multivortex solutions on the plane, Theor. Math. Phys., 2005, 144(2), 1223-1226. doi: 10.1007/s11232-005-0153-3

    CrossRef Google Scholar

    [56] D. E. Pelinovsky, Y. A. Stepanyants and Y. S. Kivshar, Self-focusing of plane dark solitons in nonlinear defocusing media, Phys. Rev. E, 1995, 51(5), 5016. doi: 10.1103/PhysRevE.51.5016

    CrossRef Google Scholar

    [57] M. Peyrard, Nonlinear dynamics and statistical physics of dna, Nonlinearity, 2004, 17(2), R1. doi: 10.1088/0951-7715/17/2/R01

    CrossRef Google Scholar

    [58] M. A. Porter, Experimental results related to dnls equations, in The Discrete Nonlinear Schrödinger Equation, Springer, 2009, 175-189.

    Google Scholar

    [59] H. O. Roshid and W. X. Ma, Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model, Phys. Lett. A, 2018, 382(45), 3262-3268. doi: 10.1016/j.physleta.2018.09.019

    CrossRef Google Scholar

    [60] W. J. Rui and Y. F. Zhang, Soliton and lump-soliton solutions in the grammian form for the bogoyavlenskii-kadomtsev-petviashvili equation, Adv. Differ. Equ., 2020, 2020(1), 1-12. doi: 10.1186/s13662-019-2438-0

    CrossRef Google Scholar

    [61] J. Satsuma and M. J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys., 1979, 20(7), 1496-1503. doi: 10.1063/1.524208

    CrossRef Google Scholar

    [62] J. Satsuma and Y. Ishimori, Periodic wave and rational soliton solutions of the benjamin-ono equation, J. Phys. Soc. Japan, 1979, 46(2), 681-687. doi: 10.1143/JPSJ.46.681

    CrossRef Google Scholar

    [63] A. Scott, Davydov's soliton, Phys. Rep., 1992, 217(1), 1-67. doi: 10.1016/0370-1573(92)90093-F

    CrossRef Google Scholar

    [64] S. Singh, L. Kaur, K. Sakkaravarthi et al., Dynamics of higher-order bright and dark rogue waves in a new (2+1)-dimensional integrable boussinesq model, Phys. Scr., 2020, 95(11), 115213. doi: 10.1088/1402-4896/abbca0

    CrossRef Google Scholar

    [65] B. Sun and A. M. Wazwaz, Interaction of lumps and dark solitons in the Mel'nikov equation, Nonlinear Dyn., 2018, 92(2), 2049-2059.

    Google Scholar

    [66] H. Wang, Lump and interaction solutions to the (2+1)-dimensional Burgers equation, Appl. Math. Lett., 2018, 58, 27-34.

    Google Scholar

    [67] A. M. Wazwaz, Two B-type Kadomtsev-Petviashvili equations of (2+1) and (3+1) dimensions: multiple soliton solutions, rational solutions and periodic solutions, Comput. Fluids, 2013, 86, 357-362. doi: 10.1016/j.compfluid.2013.07.028

    CrossRef Google Scholar

    [68] A. M. Wazwaz, Painlevé analysis for a new integrable equation combining the modified Calogero-Bogoyavlenskii-Schiff (MCBS) equation with its negative-order form, Nonlinear Dyn., 2018, 92, 877-883.

    Google Scholar

    [69] A. M. Wazwaz and L. Kaur, Optical solitons for nonlinear Schrödinger (NLS) equation in normal dispersive regimes, Optik, 2019, 184, 428-435. doi: 10.1016/j.ijleo.2019.04.118

    CrossRef Google Scholar

    [70] G. B. Whitham, Linear and nonlinear waves, 42, John Wiley & Sons, 2011.

    Google Scholar

    [71] J. W. Xia, Y. W. Zhao and X. Lü, Predictability, fast calculation and simulation for the interaction solution to the cylindrical Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simul., 2020, 88, 105260.

    Google Scholar

    [72] H. N. Xu, W. Y. Ruan, Y. Zhang and X. Lü, Multi-exponential wave solutions to two extended Jimbo–Miwa equations and the resonance behavior, Appl. Math. Lett., 2020, 99, 105976. doi: 10.1016/j.aml.2019.07.007

    CrossRef Google Scholar

    [73] J. Y. Yang and W. X. Ma, Lump solutions of the BKP equation by symbolic computation, Int. J. Mod. Phys. B, 2016, 30, 1640028. doi: 10.1142/S0217979216400282

    CrossRef Google Scholar

    [74] J. Y. Yang, W. X. Ma and Z. Y. Qin, Abundant mixed lump-soliton solutions to the bkp equation, East Asian J. Appl. Math., 2018, 8(2), 224-232. doi: 10.4208/eajam.210917.051217a

    CrossRef Google Scholar

    [75] Y. H. Yin, S. J. Chen and X. Lü, Study on localized characteristics of lump and interaction solutions to two extended Jimbo–Miwa equations, Chin. Phys. B, 2020, 29, 120502. doi: 10.1088/1674-1056/aba9c4

    CrossRef Google Scholar

    [76] Y. H. Yin, W. X. Ma, J. G. Liu and X. Lü, Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 2018, 76, 1275-1283. doi: 10.1016/j.camwa.2018.06.020

    CrossRef Google Scholar

    [77] J. B. Zhang and W. X. Ma, Mixed lump-kink solutions to the BKP equation, Comp. Math. Appl., 2017, 74, 591-596. doi: 10.1016/j.camwa.2017.05.010

    CrossRef Google Scholar

    [78] J. Zhao, J. Manafian, N. E. Zaya and S. A. Mohammed, Multiple rogue wave, lump-periodic, lump-soliton, and interaction between k-lump and k-stripe soliton solutions for the generalized kp equation, Math. Method. Appl. Sci., 2021, 44(6), 5079-5098. doi: 10.1002/mma.7093

    CrossRef Google Scholar

    [79] Y. Zhou and W. X. Ma, Applications of linear superposition principle to resonant solitons and complexitons, Comput. Math. Appl., 2017, 73, 1697-1706. doi: 10.1016/j.camwa.2017.02.015

    CrossRef Google Scholar

    [80] Y. Zhou and W. X. Ma, Complexiton solutions to nonlinear partial differential equations by the direct method, J. Math. Phys., 2017, 58, 101511. doi: 10.1063/1.4996358

    CrossRef Google Scholar

    [81] Y. Zhou and S. Manukure, Complexiton solutions to the Hirota-Satsuma-Ito equation, Math. Method Appl. Sci., 2019, 42, 1-8. doi: 10.1002/mma.5148

    CrossRef Google Scholar

    [82] Y. Zhou, S. Manukure and W. X. Ma, Lump and lump-soliton solutions to the Hirota-Satsuma-Ito equation, Commun. Nonlin. Sci. Numer. Simul., 2019, 68, 56-62. doi: 10.1016/j.cnsns.2018.07.038

    CrossRef Google Scholar

    [83] Y. Zhou, S. Manukure and M. McAnally, Lump and rogue wave solutions to a (2+1)-dimensional boussinesq type equation, J. Geom. Phys., 2021, 167, 104275. doi: 10.1016/j.geomphys.2021.104275

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(3456) PDF downloads(436) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint